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Abstract: In this papermost of the classes ofG2-structureswith Einstein inducedmetric
of negative, null, or positive scalar curvature are realized. This is carried out by means
of warped G2-structures with fiber an Einstein SU(3) manifold. The torsion forms of
any warped G2-structure are explicitly described in terms of the torsion forms of the
SU(3)-structure and the warping function, which allows to give characterizations of
the principal classes of Einstein warped G2 manifolds. Similar results are obtained for
Einstein warped Spin(7) manifolds with fiber a G2 manifold.

Introduction

The relation between geometric structures (such as almost Hermitian or G2-structures,
among others) andEinsteinmetrics has been deeply studied bymany different authors. In
particular, one of the most important problems related with this issue is the longstanding
conjecture due to Goldberg [26]:

“A compact almost Kähler Einstein manifold is Kähler”.

Partial affirmative answers have been obtained under some additional curvature con-
ditions. For instance, in [42] Sekigawa proved that assuming non-negative scalar cur-
vature the conjecture is true. However, the general case is still open. Concerning the
non-compact version of this conjecture, Apostolov, Draghici and Moroianu found a
counterexample which is described in [2]. This example consists on a non-compact
solvmanifold (solvable Lie group) endowed with a left-invariant almost Kähler struc-
ture whose induced metric is Einstein. As the almost complex structure is not integrable,
the almost Kähler structure is not Kähler.

AG2-structure on a 7-dimensionalmanifoldM consists of a reduction of the structure
group of its frame bundle to the Lie group G2. Equivalently, such structure can be
characterized by the existence of a global non-degenerate 3-form ϕ on M . Any G2-
structure has an induced Riemannian metric gϕ . When dϕ = 0 the manifold (M,ϕ) is
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called closedG2 manifold, and if in addition the 3-formϕ is coclosed then it is necessarily
parallel with respect to the Levi-Civita connection of gϕ [20]. Parallel G2 manifolds are
Ricci flat and have holonomy in G2. Gibbons, Page and Pope described a G2-analogue
of the Goldberg conjecture in [27] where they studied supersymmetric string solutions
on closed G2-manifolds. This analogue can be stated as follows:

“A compact Einstein closed G2 manifold is parallel”.

In [13] Cleyton and Ivanov answer positively to this question. For the non-compact
version, several authors have given partial affirmative answers under some additional
conditions. For example, in [9] it is shown that every Einstein closed G2 manifold with
non-negative scalar curvature is parallel. In [15] the authors proved that Einstein closed
G2-manifolds which are also ∗-Einstein are, in fact, parallel. In [19] it is shown that in
contrast to the almost Kähler case, a seven-dimensional solvmanifold cannot admit any
left-invariant closed G2-structure such that its induced metric is Einstein, unless it is
parallel.

Up to this point, a question that naturally arises is the following: which classes of G2-
structures can induce an Einstein metric? Our goal in this paper is to show that one can
realizemost of the classes of G2-structures with Einstein inducedmetric of negative, null
or positive scalar curvature (see Table 5 and Theorem 5.2). We also study the analogous
problem for Spin(7) manifolds (see Table 6 and Theorem 7.7). For the construction of
such structures, wewill consider Einstein warpedG2, resp. Spin(7), manifolds with fiber
an Einstein SU(3), resp. G2 manifold. Next we explain in more detail the contents of
the paper.

In Sect. 1 we recall some well known results about SU(3)-structures (ω,ψ+) on a
6-dimensional manifold L , such as the description of the scalar curvature of the induced
metric gω,ψ+ and the principal classes of SU(3)-structures in terms of their torsion forms
[4,16]. Section 2 is devoted to general results about G2-structures ϕ on a 7-dimensional
manifold M following [9,16]. We also recall the sixteen Fernández-Gray G2-classes P ,
Xi , Xi ⊕X j , Xi ⊕X j ⊕Xk and X = X1 ⊕X2 ⊕X3 ⊕X4, as well as their description
in terms of the torsion forms τ0, τ1, τ2, τ3 of the G2-structure. In Sect. 3, a class of G2-
structures onwarped productsM = I f ×L with fiber an SU(3)manifold L is considered,
which provides a natural extension of the well-known usual, exponential and sine cones
(see Proposition 3.1). Different constructions of G-structures based on warped products
or cones have been studied by many authors (see for instance [1,3,5–7,15,21,22] and
the references therein). We obtain in Theorem 3.4 an explicit description of the torsion
forms of the warped G2-structure in terms of the torsion forms of the SU(3)-structure
and the warping function f .

Our goal in Sect. 4 is to construct Einstein 7-manifolds in the different G2-classes
by means of warped products of certain Einstein SU(3) manifolds. In this way explicit
Einstein examples with scalar curvatures of different signs are obtained. In Sect. 4.1 we
focus on the principal classes of G2 manifolds, giving characterizations for the existence
of a parallel, nearly parallel or Einstein locally conformal parallel warpedG2-structure in
terms of the SU(3) geometry of the fiber. Such G2-structures correspond to the classes
P , X1 and X4, respectively. For the G2-class X2 ⊕ X3 it is proved that if a warped
G2 manifold M is Einstein then it is parallel (see Proposition 4.6), in particular the
G2-analogue of the Goldberg conjecture holds for warped G2 manifolds, as closed G2
manifolds constitute the class X2.

In Sect. 4.2 we obtain Einstein coclosed G2-structures, i.e. in the class X1 ⊕ X3,
on warped products of SU(3) manifolds of type W+

1 ⊕ W−
1 ⊕ W3, and apply the con-
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struction to the manifold S3 × S3 endowed with one of the SU(3)-structures found in
[41]. In Sect. 4.3 we construct Einstein G2 manifolds in different classes starting with
a 6-manifold endowed with a coupled structure. Coupled SU(3)-structures were first
introduced in [40] and have torsion classW−

1 ⊕W−
2 , so they are half-flat and generalize

the nearly Kähler structures. The twistor space Z over a self-dual Einstein 4-manifold
has an Einstein coupled SU(3)-structure [43], which is used in [22] to construct a Ricci-
flat locally conformal closed G2 manifold, i.e. in the classX2⊕X4 (see [23] for Einstein
solvmanifolds in this class with negative scalar curvature). In Theorems 4.14, 4.17 and
4.18we construct Einstein G2 manifolds of negative, null and positive scalar curvature
in the classes X2 ⊕X4, X1 ⊕X2 ⊕X3, X1 ⊕X3 ⊕X4 and X2 ⊕X3 ⊕X4. An Einstein
6-solvmanifold S, of negative scalar curvature, is considered in Sect. 4.4 to obtain an
Einstein G2 manifold on the hyperbolic cosine cone over S.

Motivated by the classification problem studied in [12], in Sect. 5 we realize most
of the G2-classes in the Einstein setting with scalar curvature of different signs (see
Theorem 5.2). More concretely, in the Ricci flat case and in the case of positive scalar
curvature, there exist Einstein warped G2-structures of every admissible strict type,
except possibly for X1 ⊕ X2 ⊕ X4. On the other hand, there are Einstein warped G2-
structures with negative scalar curvature of every admissible strict type, except for X2,
X3,X2⊕X3, and possibly forX1⊕X2⊕X4. Table 5 shows concrete Einstein examples,
when they exist, in the different G2-classes together with information on the SU(3)
geometry of the fibers. At the end of Sect. 5, explicit families of Einstein G2-structures
with identical Riemannian metric but having different G2 type are given (see [1,9,28,
34,36] for related results).

Section 6 is devoted to warped Spin(7) manifolds (N = I f × M,φ) with fiber
a G2 manifold (M,ϕ). In Theorem 6.3 we describe the torsion forms λ1, λ5 of the
Spin(7)-structure φ in terms of the torsion forms of the fiber, which allows to give
characterizations for the existence of a parallel or an Einstein locally conformal parallel
warped Spin(7)-structure in terms of the G2 geometry of the fiber. In Sect. 7 Einstein
8-manifolds in the different Spin(7)-classes, i.e. P , Y1, Y2 and the general class Y =
Y1⊕Y2, are constructed. For zero or positive scalar curvatures, there are Einsteinwarped
Spin(7)-structures of every admissible strict type, whereas for negative scalar curvature
there are Einstein warped Spin(7)-structures of every admissible strict type, except for
Y2 (see Theorem 7.7 and Table 6).

1. SU(3)-Structures

An SU(3)-structure on a 6-dimensional manifold L consists of a triple (g, J,') such
that g is a Riemannian metric, J is an almost complex structure compatible with the
metric, and ' is a complex volume form satisfying

3
4
i ' ∧ ' = ω3,

where ω is the fundamental form associated to the almost Hermitian structure (g, J ).
Note that an SU(3)-structure on a 6-dimensional manifold L can be described by the
pair (ω,ψ+), where ψ+ is the real part of the complex volume form '. Indeed, ψ+
determines the almost complex structure J , and the imaginary part ψ− of the form '
satisfies ψ− = Jψ+ (see [29]). We will denote by gω,ψ+ the Riemannian metric induced
by the SU(3)-structure.

As it is described in [4], the intrinsic torsion of an SU(3)-structure can be given in
terms of the derivatives of the forms ω, ψ+ and ψ−. Consider the natural action of the
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group SU(3) on the spaces(p(L) of differential p-forms on L , and more concretely, the
SU(3) irreducible subspaces of(2(L) and(3(L). One has the following decompositions
[4,16]:

(2(L) = (2
1(L) ⊕ (2

6(L) ⊕ (2
8(L),

where
(2

1(L) = { f ω | f ∈ C∞(L)},

(2
6(L) = {∗6 J (α ∧ ψ+) | α ∈ (1(L)} = {β ∈ (2(L) | Jβ = −β},

(2
8(L) = {β ∈ (2(L) | β ∧ ψ+ = 0, ∗6 Jβ = −β ∧ ω}

= {β ∈ (2(L) | Jβ = β, β ∧ ω2 = 0},
and

(3(L) = (3
1+(L) ⊕ (3

1−(L) ⊕ (3
6(L) ⊕ (3

12(L)

with
(3

1±(L) = { f ψ± | f ∈ C∞(L)},

(3
6(L) = {α ∧ ω | α ∈ (1(L)} = {γ ∈ (3(L) | ∗6 Jγ = γ },

(3
12(L) = {γ ∈ (3(L) | γ ∧ ω = 0, γ ∧ ψ± = 0}.

Here, ∗6 denotes the Hodge star operator, and(
p
k (L) is the SU(3) irreducible space of p-

forms of dimension k at every point. The decomposition on the other degrees is obtained
via the isomorphism described by the Hodge star operator ∗6, i.e. ∗6 (

p
k (L)

∼= (
6−p
k (L).

Thus, the differentials ofω,ψ+ andψ− can be decomposed into summands belonging
to the SU(3) invariant spaces as follows:

dω = −3
2
σ0 ψ+ +

3
2
π0 ψ− + ν1 ∧ ω + ν3,

dψ+ = π0 ω2 + π1 ∧ ψ+ − π2 ∧ ω,

dψ− = σ0 ω2 + π1 ∧ ψ− − σ2 ∧ ω,

(1)

where σ0,π0 ∈ C∞(L), π1, ν1 ∈ (1(L), π2, σ2 ∈ (2
8(L) and ν3 ∈ (3

12(L) are called
the torsion forms. Note that in the last equality, π1 ∧ψ− = Jπ1 ∧ψ+ accordingly to [4].

Bedulli and Vezzoni derived the Ricci tensor of the metric gω,ψ+ induced by the
SU(3)-structure in terms of the torsion forms. In [4, Theorem3.4], they find the following
expression for the scalar curvature:

Scal(gω,ψ+) =
15
2

π2
0 +

15
2

σ 2
0 + 2d∗6π1 + 2d∗6ν1 − |ν1|2 − 1

2
|σ2|2

−1
2
|π2|2 − 1

2
|ν3|2 + 4⟨π1, ν1⟩. (2)

Here, d∗6 denotes the codifferential, i.e. the adjoint of the exterior derivative with respect
to the metric.

As it is described in [16] the torsion of an SU(3)-structure, namely T , lies in the
space

T ∈ W±
1 ⊕ W±

2 ⊕ W3 ⊕ W4 ⊕ W5,

where Wi are the irreducible components under the action of the group SU(3). The
spaces Wi are related to the torsion forms by Table 1.
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Table 1. Principal classes of SU(3)-structures

Class Non-zero torsion form
{0} –
W+

1 π0
W−

1 σ0
W+

2 π2
W−

2 σ2
W3 ν3
W4 ν1
W5 π1

Hence, torsion forms provide a useful tool to describe the principal classes of SU(3)-
structures. For instance, SU(3)-structures with zero torsion are called integrable, or
Calabi-Yau, their holonomy is contained in SU(3) and they are Ricci flat. The SU(3)-
structures in the class W−

1 are nearly Kähler. They are Einstein and all the torsion
forms vanish except for σ0. There are only finitely many homogeneous nearly Kähler
manifolds [11] and new complete inhomogeneous examples on S6 and S3 × S3 are
found recently in [24]. Other well known SU(3)-structures are the half-flat structures,
for which π0 = π1 = ν1 = π2 = 0, and the nearly half-flat structures, characterized by
π1 = ν1 = σ2 = 0. Half-flat structures were first considered in [30] (see also [16]) and
the class of nearly half-flat structures was introduced in [21], and these structures can
be evolved to a parallel and to a nearly parallel G2-structure, respectively.

In this paper the SU(3)-structures in the classes W+
1 ⊕ W−

1 ⊕ W3 and W−
1 ⊕ W−

2
will play a role in the construction of Einstein G2 manifolds (see Sects. 4.2 and 4.3).
The structures in the first class are characterized by π1 = ν1 = π2 = σ2 = 0, and the
structures in the second class are known as coupled SU(3)-structures. Coupled SU(3)-
structures were first introduced in [40] (see also [22]) and they are characterized by the
condition dω = − 3

2σ0 ψ+, where σ0 is constant, which is equivalent to the vanishing of
all the torsion forms except σ0 and σ2. Thus, coupled structures are half-flat and they
generalize the nearly Kähler structures.

Weend this section recalling somewell-known identities concerningSU(3)-structures
that will be useful in the next sections.

Lemma 1.1. Consider an SU(3)-structure (ω,ψ+,ψ−) on a 6-manifold L. Then, for
any 1-form τ ∈ (1(L) the following identities hold:

• ∗6(τ ∧ ω) ∧ ω = ∗6(τ ∧ ψ+) ∧ ψ+ = ∗6(τ ∧ ψ−) ∧ ψ− = 2 ∗6 τ ,
• ∗6(τ ∧ ψ+) ∧ ψ− = − ∗6 (τ ∧ ψ−) ∧ ψ+ = −τ ∧ ω2.

Proof. Let {e1, . . . , e6} be a basis adapted to the SU(3)-structure, i.e. a local orthonormal
basis such that the forms ω,ψ+ and ψ− have the following expressions

ω = e12 + e34 + e56, ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246.

Here we denote by ei j , resp. ei jk , the wedge product ei ∧ e j , resp. ei ∧ e j ∧ ek . Now,
a generic 1-form on L can be written locally as τ = ∑7

i=1 ai e
i , with ai ∈ C∞(L), and

the result follows by a direct calculation. ⊓,
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2. G2-Structures

A G2-structure on a 7-dimensional manifold M consists of a reduction of the structure
group of its frame bundle to the Lie group G2. Equivalently, the existence of such
structure can be characterized by the existence of a global non-degenerate 3-form ϕ on
M which can be locally written as

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245, (3)

where {e1, . . . , e7} is a local basis of 1-forms on M . The presence of a G2-structure ϕ
on a manifold defines a volume form vol7 and a Riemannian metric gϕ which satisfy

gϕ(X, Y )vol7 =
1
6
ιXϕ ∧ ιYϕ ∧ ϕ,

for every X,Y vector fields on M .
Let (M,ϕ) be a G2 manifold. Then, the group G2 acts on the space (p(M) of

differential p-forms on themanifoldM . This action is irreducible on(1(M) and(6(M),
but it is reducible for (p(M) with 2 ≤ p ≤ 5. Since the Hodge star operator ∗7 induces
an isomorphism between the spaces of p-forms and (7− p)-forms on M , we only need
to describe the decompositions for p = 2 and 3. In [9] it is shown that the G2 irreducible
decompositions for p = 2 and 3 are

(2(M) = (2
7(M) ⊕ (2

14(M),

where

(2
7(M) = {∗7(α ∧ ∗7ϕ) | α ∈ (1(M)},

(2
14(M) = {β ∈ (2(M) | β ∧ ϕ = − ∗7 β} = {β ∈ (2(M) | β ∧ ∗7ϕ = 0},

and
(3(M) = (3

1(M) ⊕ (3
7(M) ⊕ (3

27(M),

with
(3

1(M) = { f ϕ | f ∈ C∞(M)},
(3

7(M) = {∗7(α ∧ ϕ) | α ∈ (1(M)},
(3

27(M) = {γ ∈ (3(M) | γ ∧ ϕ = 0, γ ∧ ∗7ϕ = 0},
where (

p
k (M) denotes a G2 irreducible space of p-forms of dimension k at every point.

Note that the description on the other degrees are obtained via the isomorphism described
by the Hodge star operator, i.e. ∗7 (

p
k (M) ∼= (

7−p
k (M).

As it is pointed out in [9], it is useful to recognize the scaling factors that the isomor-
phisms between these G2 irreducible spaces introduce. For example, for any κ ∈ (1(M)
one has

∗7
(
∗7 (κ ∧ ϕ) ∧ ϕ

)
= −4κ,

∗7
(
∗7 (κ ∧ ∗7ϕ) ∧ ∗7ϕ

)
= 3κ.

(4)

The G2 type decomposition of forms on M allows to express the exterior derivative
of ϕ and ∗7ϕ as follows

dϕ = τ0 ∗7ϕ + 3 τ1 ∧ ϕ + ∗7 τ3,

d ∗7ϕ = 4 τ1 ∧ ∗7ϕ + τ2 ∧ ϕ,
(5)
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Table 2. Principal classes of G2-structures

Class Torsion forms Structure
P τ0 = τ1 = τ2 = τ3 = 0 Parallel
X1 τ1 = τ2 = τ3 = 0 Nearly parallel
X2 τ0 = τ1 = τ3 = 0 Closed
X3 τ0 = τ1 = τ2 = 0 Coclosed of pure type
X4 τ0 = τ2 = τ3 = 0 Locally conformal parallel
X1 ⊕ X3 τ1 = τ2 = 0 Coclosed

where τ0 ∈ C∞(M), τ1 ∈ (1(M), τ2 ∈ (2
14(M) and τ3 ∈ (3

27(M) are called the torsion
forms of the G2-structure.

According to [20], the covariant derivative of ϕ can be decomposed into four ir-
reducible components, namely X1, X2, X3 and X4. Thus, a G2-structure is said to be
of type P,Xi ,Xi ⊕ X j ,Xi ⊕ X j ⊕ Xk or X if the covariant derivative ∇gϕϕ lies in
{0}, Xi , Xi ⊕ X j , Xi ⊕ X j ⊕ Xk or X = X1⊕ X2 ⊕ X3⊕ X4, respectively. Hence, there
exist 16 different classes of G2-structures. These classes can be described in terms of the
behavior of the torsion forms τ0, τ1, τ2, τ3 [16]. In Table 2 the principal Fernández-Gray
classes of G2-structures are given.

Hence, torsion forms constitute a useful tool to describe different G2-structures.
Moreover, as it was shown by Bryant in [9], one can also describe the scalar curvature
of a G2 manifold in terms of its torsion forms by

Scal(gϕ) = 12 d∗7τ1 +
21
8

τ 20 + 30 |τ1|2 − 1
2
|τ2|2 − 1

2
|τ3|2, (6)

where d∗7 is the codifferential with respect to the metric gϕ on M .
The geometry ofG2-structures in the different classes above has been studied bymany

authors. Parallel G2 manifolds have holonomy in G2 and they are Ricci-flat. Examples
of manifolds with G2 holonomy are constructed in [8,10,32]. On the other hand, any
(strict) nearly parallel G2 manifold is Einstein with positive scalar curvature [25]. The
classification of G2 manifolds, initiated in [20], was completed in [12] both in the non-
compact and compact cases. In Sect. 5 we realize most of the G2-classes in the Einstein
setting with scalar curvature of different signs.

3. Warped G2-Structures

In this section we consider a class of G2-structures on warped products with fiber an
SU(3)manifold, and we obtain an explicit description of the torsion forms of the warped
G2-structure in terms of the torsion forms of the SU(3)-structure.

The presence of an SU(3)-structure on a 6-dimensional manifold provides a way
to obtain 7-dimensional manifolds endowed with G2-structures. Indeed, consider L a
6-dimensional manifold endowed with an SU(3)-structure (ω,ψ+,ψ−). Let M be the
Riemannian product M = R × L , and denote by

p : M −→ R, q : M −→ L ,

the projections. Then, the 3-form

ϕ = q∗(ω) ∧ p∗(dt) + q∗(ψ+),

where t is the coordinate on R, defines a G2-structure on M . In the following, we will
identify ω,ψ+ and ψ− with their pullbacks onto M .
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We will consider a slightly more general class of G2-structures given by the warped
product construction. Let (B, gB) and (F, gF ) be two Riemannian manifolds, and let
f be a nowhere vanishing smooth function on B. In this paper we suppose that f is
never a constant function. Denote by p and q the projections of B × F onto B and
F , respectively. Recall that the warped product, namely M = B × f F , is the product
manifold B × F endowed with the metric g given by

g = f 2 q∗(gF ) + p∗(gB).

The manifold B is called the base of M , F the fiber, and the warped product is called
trivial if f is a constant function.

In what follows, we consider F = L and a 1-dimensional base B. More concretely,
B = I f ⊂ R is an open interval where the function f (t) does not vanish. In the next
result we introduce the class of G2-structures that will be studied.

Proposition 3.1. Let (L ,ω,ψ+,ψ−) be an SU(3) manifold and consider functions
f,α,β : I f −→ R, with α2(t) + β2(t) = 1. Then, the form on M = I f × L given
by

ϕ = f 2(t)ω ∧ dt + f 3(t)
(
α(t)ψ+ − β(t)ψ−

)
(7)

defines a family of G2-structures whose induced metric is

gϕ = f 2(t) gω,ψ+ + dt2.

Proof. Consider {e1, . . . , e6} a local orthonormal basis of 1-forms for which the SU(3)-
structure has its canonical expression. Then, with respect to the basis

{h1, . . . , h7} = { f (t)e1, . . . , f (t)e4, f (t)
(
α(t)e5−β(t)e6

)
, f (t)

(
β(t)e5+α(t)e6

)
, dt}

the 3-form ϕ can be written as in (3), and therefore {h1, . . . , h7} is a local orthonormal
basis for the metric gϕ . Thus,

gϕ =
7∑

i=1

hi ⊗ hi = f 2(t)
6∑

i=1

ei ⊗ ei + dt ⊗ dt = f 2(t) gω,ψ+ + dt2.

⊓,
It is worthy to remark that in the previous proposition we have enlarged the set of

G2-structures ϕ, inducing the same metric gϕ , by using functions α(t) and β(t) due to
the phase freedom for the (3,0)-form of the SU(3)-structure. This will allow us to obtain
Einstein metrics that could not be found with α and β constant.

According to Proposition 3.1, if (L ,ω,ψ+,ψ−) is an SU(3) manifold, then the G2
manifold M = I f × L with ϕ described in (7) is precisely the warped product manifold
M = I f × f L . In what follows, any such G2-structure ϕ will be called warped G2-
structure, and we will refer to the pair (M = I f × L ,ϕ) as a warped G2 manifold.
Notice that the warped G2-structure generalizes the well-known ideas of cone and sine-
cone that appear in the literature.

Next we will obtain an explicit description of the torsion forms of the warped G2-
structure on M = I f × L in terms of the torsion forms of the SU(3)-structure on L , the
warping function f , and the functions α,β. For the sake of simplicity, in the next results
we will not write the t-dependence of the functions f,α and β.

The following lemma will be useful to relate the Hodge star operators ∗6 and ∗7
induced by the SU(3) and G2 structures, respectively.
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Lemma 3.2. Let γ ∈ (p(L) be a differential p-form on L, and let ∗6 and ∗7 be the
Hodge star operators induced by the structures (ω,ψ+,ψ−) and ϕ, respectively. Then,

∗7γ = f 6−2p ∗6γ ∧ dt, ∗7(γ ∧ dt) = (−1)p f 6−2p ∗6γ .

Proof. It is an immediate consequence of the definition of theHodge star operator and the
fact that ∗6 and ∗7 are determined, respectively, by (gω,ψ+ , vol6 = 1

6ω
3) and (gϕ, vol7),

with vol7 = f 6vol6 ∧ dt . ⊓,
Proposition 3.3. Let ϕ be a warped G2-structure on M = I f × L. Then,

dϕ = − f 2
(3
2
σ0 + 3 f ′α + f α′

)
ψ+ ∧ dt + f 2

(3
2
π0 + 3 f ′β + fβ ′

)
ψ− ∧ dt

+ f 3
(
α π0 − β σ0

)
ω2 + f 2ν1 ∧ ω ∧ dt + f 2ν3 ∧ dt

+ f 3π1 ∧ (α ψ+ − β ψ−) − f 3
(
α π2 − β σ2

)
∧ ω,

d ∗7 ϕ = f 3
(
2 f ′ + β π0 + α σ0

)
ω2 ∧ dt + f 4ν1 ∧ ω2

+ f 3π1 ∧
(
β ψ+ + α ψ−

)
∧ dt − f 3

(
β π2 + α σ2

)
∧ ω ∧ dt,

wherewe denote byπ0, σ0,π1, ν1,π2, σ2 and ν3 the torsion forms of theSU(3)-structure
(ω,ψ+,ψ+) on L.

Proof. For dϕ, the result is a direct consequence of Eq. (1) and Proposition 3.1. On the
other hand, from Lemma 3.2 it follows that

∗7ϕ = 1
2
f 4 ω ∧ ω + f 3

(
β ψ+ + α ψ−

)
∧ dt,

and the result for d ∗7 ϕ is obtained also as a direct consequence of (1) and
Proposition 3.1. ⊓,
Theorem 3.4. Let (L ,ω,ψ+,ψ−) be an SU(3) manifold with torsion forms π0, σ0,π1,
ν1,π2, σ2 and ν3. Then, the torsion forms of a warped G2 manifold (M = I f × L ,ϕ)
are given by

τ0 = 4
7 f

(
3π0 α − 3 σ0 β + f αβ ′ − fβα′),

τ1 = 1
2 f

(
π0 β + σ0 α + 2 f ′)dt +

ν1

6
+

π1

6
,

τ2 = −2
3

∗6(ν1 ∧ ω2) ∧ dt +
1
3

∗6(π1 ∧ ω2) ∧ dt

−1
3
fβ ∗6(π1 ∧ ψ+) − 1

3
f α ∗6(π1 ∧ ψ−)

+
2
3
fβ ∗6(ν1 ∧ ψ+) +

2
3
f α ∗6(ν1 ∧ ψ−) − fβ π2 − f α σ2,

τ3 = − 3
14

f 2
(
π0 α2 − σ0 αβ − 2 fβ ′

)
ψ+ +

3
14

f 2
(
π0 αβ − σ0 β2 + 2 f α′

)
ψ−

+
2
7
f
(
π0 α − σ0 β − 2 f αβ ′ + 2 fβα′)ω ∧ dt − 1

2
∗6(ν1 ∧ ω) +

1
2

∗6(π1 ∧ ω)
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+
1
2
f α ∗6(π1 ∧ ψ+) ∧ dt − 1

2
fβ ∗6(π1 ∧ ψ−) ∧ dt − 1

2
f α ∗6(ν1 ∧ ψ+) ∧ dt

+
1
2
fβ ∗6(ν1 ∧ ψ−) ∧ dt + f (α π2 − β σ2) ∧ dt − f 2 ∗6ν3.

Proof. From (5) it can be easily obtained that

τ0 = 1
7 ∗7(d ϕ ∧ ϕ), τ2 = − ∗7 d ∗7 ϕ + 4 ∗7(τ1 ∧ ∗7ϕ),

τ1 = − 1
12 ∗7(∗7d ϕ ∧ ϕ), τ3 = ∗7dϕ − τ0 ϕ − 3 ∗7(τ1 ∧ ϕ).

Let us detail the computations for τ0. By Proposition 3.3 we have

dϕ ∧ ϕ =
[
− f 2

(3
2
σ0 + 3 f ′α + f α′

)
ψ+ ∧ dt + f 2

(3
2
π0 + 3 f ′β + fβ ′

)
ψ− ∧ dt

+ f 3
(
π0 α − σ0 β

)
ω2 + f 2ν1 ∧ ω ∧ dt + f 2ν3 ∧ dt

+ f 3π1 ∧ (α ψ+ − β ψ−) − f 3
(
α π2 − β σ2

)
∧ ω

]

∧
[
f 2ω ∧ dt + f 3

(
α ψ+ − β ψ−

)]

= f 5(π0 α − σ0 β)ω3 ∧ dt + α f 5
(3
2
π0 + 3 f ′β + fβ ′

)
ψ+ ∧ ψ− ∧ dt

− β f 5
(3
2
σ0 + 3 f ′α + f α′

)
ψ+ ∧ ψ− ∧ dt

= f 5(π0 α − σ0 β)ω3 ∧ dt + f 5
(
π0 α +

2
3
f αβ ′ − σ0 β − 2

3
fβα′) ω3 ∧ dt

= f 5
(
2π0 α − 2σ0 β +

2
3
f αβ ′ − 2

3
fβα′)ω3 ∧ dt.

Therefore, using Lemma 3.2 we get

τ0 =
1
7

∗7(d ϕ ∧ ϕ) = 4
7 f

(
3π0 α − 3σ0 β + f αβ ′ − fβα′).

Similarly, the results for τ1, τ2 and τ3 follow as a long but standard computation
taking into account Proposition 3.3 and Lemmas 1.1 and 3.2. ⊓,

An immediate consequence of the previous theorem is the following

Corollary 3.5. The torsion forms of a warped G2-structure satisfy:

τ0 = 0 ⇐⇒
{
i) 3π0 α − 3σ0 β + f αβ ′ − fβα′ = 0;

τ1 = 0 ⇐⇒
{
i i) σ0 α + π0 β + 2 f ′ = 0,
i i i) π1 = −ν1;

τ2 = 0 ⇐⇒
{
iv) π1 = 2ν1,
v) βπ2 + ασ2 = 0;

τ3 = 0 ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vi) π0 α − σ0 β − 2 f αβ ′ + 2 fβα′ = 0,
vi i) π1 = ν1,

vi i i) απ2 − βσ2 = 0,
i x) ν3 = 0.
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Proof. The result is obvious for τ0, τ1 and τ2 in view of Theorem 3.4. For τ3, the
vanishing of the first three summands (see Theorem 3.4) is equivalent to vi). Indeed,

π0 α2 − σ0 αβ − 2 fβ ′ = α
(
π0 α − σ0 β − 2 f αβ ′ + 2 fβα′

)

and
π0 αβ − σ0 β2 + 2 f α′ = β

(
π0 α − σ0 β − 2 f αβ ′ + 2 fβα′

)
,

where we are using the fact that αα′ = −ββ ′, which follows from the identity α2 +β2 =
1. The other conditions vi i), vi i i) and i x) are clear from Theorem 3.4. ⊓,

4. Einstein Warped G2 Manifolds

Our goal in this section is to construct Einstein 7-manifolds in the different G2-classes
by means of warped products of certain Einstein SU(3) manifolds. The G2-structures
are of the form (7), i.e. what we called warped G2-structures. In this way we will
obtain explicit Einstein examples with scalar curvature of different signs. In Sect. 4.1
we study the principal classes of G2 manifolds, Sect. 4.2 is devoted to coclosed G2-
structures, in Sect. 4.3 warped products of coupled SU(3)-structures are considered,
and in Sect. 4.4 we obtain G2 structures on the hyperbolic cosine cone of Einstein
solvmanifolds.

Let us consider the warped product M = B × f F , i.e. the product manifold B × F
endowedwith themetric g given by g = f 2q∗(gF )+p∗(gB), with p andq the projections
of B × F onto B and F , respectively, and f a nowhere vanishing smooth function on
B. We denote by RicB the lift to M (i.e. the pullback by p) of the Ricci curvature of
B, similarly for RicF , and let Hess( f ) be the lift to M of the Hessian of f . By [38, p.
211] the warped product M = B × f F is Einstein with constant λ (i.e. Ric = λ g) if
and only if (F, gF ) is Einstein with constant µ (i.e. RicF = µ gF ) and the following
conditions are satisfied:

λ gB = RicB − d
f
Hess( f ), λ = µ

f 2
− 1 f

f
− (d − 1)

∣∣∣∣
∇ f
f

∣∣∣∣
2

gB

,

where d = dim F ≥ 2, 1 f = tr
(
Hess( f )

)
, and ∇ f denotes the gradient of f .

Moreover, when the base space B has dimension 1, these equations reduce to

( f ′)2 +
λ

d
f 2 = µ

d − 1
. (8)

The behavior of the solutions of (8) depends on the signs of the Einstein constants λ
and µ. Nevertheless, up to homotheties, those solutions (besides the constant case) are
given in Table 3 (see also [5]).

Table 3. Solutions of the equation (8)

µ −(d − 1) 0 d − 1 d − 1 d − 1
λ −d −d −d 0 d
f (t) cosh t et sinh t t sin t
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From this table the next result follows

Theorem 4.1 [5, Theorem 9.110]. Let M = B× f F be a warped product, with dim B =
1 and dim F = d > 1. If M is a complete Einstein manifold, then either M is a Ricci-flat
Riemannian product, or B = R, F is Einstein with non-positive scalar curvature and
M has negative scalar curvature.

We consider B = I f ⊂ R an open interval where the function f (t) does not vanish.
For the functions in Table 3 we will take generically I f = R for f (t) = cosh t or et ,
I f = (0,∞) for f (t) = sinh t or t , and I f = (0,π) for f (t) = sin t . In the latter case,
if F is compact then g = dt2 + sin2 t q∗(gF ) defines a metric on the product manifold
[0,π ] × F with two conical singularities at t = 0 and t = π (see for instance [6,21]).

In order to use directly Table 3, we will consider the Einstein metric on the fiber F
to be “normalized”, that is, its Einstein constant is

−(d − 1), 0, or d − 1,

where d denotes the dimension of F , or equivalently, the scalar curvature is

−d (d − 1), 0, or d (d − 1),

respectively. There is no loss of generality in assuming this condition since everyEinstein
metric can be normalized via a rescaling. Similar considerations are applied to Einstein
metrics on the total space M of the warped product.

4.1. Principal classes ofG2 manifolds. In this section we focus on Einstein 7-manifolds
in the principal classes ofG2 manifolds, i.e. in the classesP ,X1,X2,X3 andX4.Whereas
one can construct Einstein manifolds in the classes P , X1 and X4 by means of warped
G2-structures, however we will prove in Proposition 4.6 that such a manifold in the class
X2 ⊕ X3 is necessarily parallel.

Next, several characterizations will be given for the classes P , X1 and X4. We begin
with parallel G2 manifolds.

Proposition 4.2. There exists a parallel warpedG2-structure on M = I f ×L if and only
if the fiber (L ,ω,ψ+,ψ−) belongs toW+

1 ⊕W−
1 and is Einstein with Scal(gω,ψ+) = 30.

Furthermore, in that case M = (0,∞) × L is the t-cone with the G2-structure

ϕ = t2 ω ∧ dt + t3
(
−σ0

2
ψ+ +

π0

2
ψ−

)
, (9)

where σ0,π0 are the (constant) torsion functions of the SU(3)-structure, which satisfy
π2
0 + σ 2

0 = 4.

Proof. Let us suppose that the SU(3) manifold (L ,ω,ψ+,ψ−) belongs to W+
1 ⊕ W−

1
and is Einstein with constant 5. Hence, the torsion reduces to π0 and σ0, and the Eq. (1)
are given by

dω = −3
2
σ0 ψ+ +

3
2
π0 ψ−, dψ+ = π0 ω2, dψ− = σ0 ω2.

These equations imply that the wedge product of the 1-forms dπ0, dσ0 by ω2 is zero,
so π0, σ0 are constant. Moreover, from (2) we get 30 = Scal(gω,ψ+) = 15

2 (π
2
0 + σ 2

0 ),
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which implies π2
0 +σ 2

0 = 4. Now, the warped G2-structure with f (t) = t , α = −σ0
2 and

β = −π0
2 satisfies the equations i)−i x) in Corollary 3.5, so it is parallel.

Conversely, let us suppose that there exists a warped G2-structure that is parallel,
i.e. the equations i)−i x) in Corollary 3.5 are satisfied. From iii), iv) and ix) we have
that π1 = ν1 = ν3 = 0, and from v) and viii) we get σ2 = π2 = 0 because α2(t) +
β2(t) = 1. Hence, the manifold (L ,ω,ψ+,ψ−) belongs to the SU(3)-classW+

1 ⊕W−
1 ,

and by the first part of the proof we have that the torsion functions π0 and σ0 are
constant. Furthermore, by (6) any G2-parallel structure is Ricci-flat, so from Table 3
we get that the warping function is necessarily f (t) = t and the metric induced by
the SU(3)-structure is Einstein with constant µ = 5. Notice that (2) implies π2

0 + σ 2
0

= 4.
Finally, it remains to see that the G2-structure on the t-cone is given by (9). Let us

write α(t) = cos θ(t) and β(t) = sin θ(t), for some function θ(t). The equations i) and
vi) for f (t) = t are equivalent to

π0 α(t) − σ0 β(t) = 0, θ ′(t) = 0,

which implies that α(t),β(t) are constant functions. On the other hand, from the first
equation above and the equation i i) for f (t) = t , we arrive at the following system

π0 α − σ0 β = 0, σ0 α + π0 β = −2.

Now, the condition π2
0 + σ 2

0 = 4 clearly implies that α = −σ0
2 and β = −π0

2 , and the
result follows. ⊓,

In the following proposition we consider warped G2 manifolds in the class X1. The
result also gives another characterization of an SU(3) manifold in the class W+

1 ⊕ W−
1

in terms of a sin t-cone.

Proposition 4.3. There exists a nearly parallel warped G2-structure on M = I f × L
with Scal(gϕ) = 42 if and only if the fiber (L ,ω,ψ+,ψ−) belongs to W+

1 ⊕ W−
1 and

is Einstein with Scal(gω,ψ+) = 30.
Furthermore, in that case M = (0,π) × L is the sin t-cone with the G2-structure

ϕ = sin2 t ω ∧ dt + sin3 t (cos(ε t + ρ)ψ+ − sin(ε t + ρ)ψ−) , (10)

where ε = ±1 and ρ is given in terms of the (constant) torsion functions σ0,π0 of the
SU(3)-structure by σ0 = −2 cos ρ and π0 = −2 sin ρ.

Proof. Suppose that the SU(3) manifold belongs to W+
1 ⊕ W−

1 and is Einstein with
constant 5. Hence, the same argument as in the first part of the proof of Proposition 4.2
shows that π0, σ0 are constant and π2

0 +σ 2
0 = 4. Now, the G2-structure given by (10) sat-

isfies the equations i i)−i x) in Corollary 3.5. Thus, we get a nearly parallel G2 manifold
with Einstein constant equal to 6.

Let us prove the converse. Suppose that there exists awarpedproduct of (L ,ω,ψ+,ψ−)
given by (7) that is a nearly parallel G2 manifold with Einstein constant 6, i.e. the
equations i i)−i x) in Corollary 3.5 are satisfied. The equations iii), iv) and ix) imply
π1 = ν1 = ν3 = 0, and from v) and viii)we get σ2 = π2 = 0 because α2(t)+β2(t) = 1.
On the other hand, by Table 3we get that the warping function is necessarily f (t) = sin t
and the metric induced by the SU(3)-structure is Einstein with constant µ = 5, which
implies, by (2), that π2

0 + σ 2
0 = 4. Hence, the manifold (L ,ω,ψ+,ψ−) belongs to the

SU(3)-classW+
1 ⊕W−

1 , and the (constant) torsion functions π0, σ0 satisfy π2
0 +σ 2

0 = 4.
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It remains to prove that the warped product M must be necessarily the sin t-cone
given in (10). To see this, we consider the equations i i) and vi) for f (t) = sin t in
Corollary 3.5. Writing α(t) = cos θ(t) and β(t) = sin θ(t), for some function θ(t), we
get

σ0 α(t) + π0 β(t) = −2 cos t, π0 α(t) − σ0 β(t) = 2 θ ′(t) sin t.

Using π2
0 + σ 2

0 = 4, we have

α(t) = −1
2

σ0 cos t +
1
2

π0 θ ′(t) sin t, β(t) = −1
2

π0 cos t − 1
2

σ0 θ ′(t) sin t,

and from α2(t) + β2(t) = 1 it follows that

[(
θ ′(t)

)2 − 1
]
sin2 t = 0.

This implies θ ′(t) = ±1 and thus θ(t) = ε t + ρ, where ε = ±1 and ρ is a constant
which, as we show next, it is determined by σ0 and π0. Indeed, the equations i i) and vi)
are now written as

(σ0 cos ρ + π0 sin ρ + 2) cos t + ε(π0 cos ρ − σ0 sin ρ) sin t = 0,

(π0 cos ρ − σ0 sin ρ) cos t − ε(σ0 cos ρ + π0 sin ρ + 2) sin t = 0.

These equations imply

σ0 cos ρ + π0 sin ρ = −2, σ0 sin ρ − π0 cos ρ = 0,

whose solution is σ0 = −2 cos ρ and π0 = −2 sin ρ. In conclusion, the G2-structure is
given by (10) and the proof is complete. ⊓,

Corollary 4.4. Let (L ,ω,ψ+,ψ−)beanSU(3)manifold inW+
1 ⊕W−

1 with Scal(gω,ψ+) =
30. Then, the nearly parallel G2-structure on M = I f × L given by (10) has torsion
τ0 = 4 ε (ε = ±1).

Proof. It is a direct consequence of Proposition 4.3 and the expression of τ0 in Theo-
rem 3.4, taking f (t) = sin t , α(t) = cos(εt + ρ), β(t) = sin(εt + ρ), cos ρ = −σ0

2 and
sin ρ = −π0

2 . ⊓,

As a consequence of Propositions 4.2 and 4.3 we recover well-known characteriza-
tions of a nearly-Kähler manifold L given in [3,21] (see also [7]). Here, and in what
follows, we consider that the torsion of a nearly-Kähler manifold is σ0 = −2, so the
Einstein constant equals 5.
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Corollary 4.5. Let (L ,ω,ψ+) be an SU(3) manifold. Then:

(i) L is nearly-Kähler if and only if the (usual) cone with the G2-structure

ϕ = t2 ω ∧ dt + t3 ψ+,

is a parallel G2 manifold;
(ii) L is nearly-Kähler if and only if the sine-cone with the G2-structure

ϕ = sin2 t ω ∧ dt + sin3 t (cos t ψ+ − sin t ψ−) ,

is a nearly parallel G2 manifold.

Proof. For (i), just take in (9) the values σ0 = −2 and π0 = 0. For (ii) we take ε = 1 in
(10) and ρ = 0, because −2 = σ0 = −2 cos ρ and 0 = π0 = −2 sin ρ. ⊓,

Recall that G2 manifolds in the classX2⊕X3 are characterized in terms of the torsion
forms by the conditions τ0 = τ1 = 0.

Proposition 4.6. A warped G2 manifold M in the class X2 ⊕ X3 is Einstein if and only
if it is a parallel G2 manifold.

Proof. From Corollary 3.5, if the G2-structure belongs to the class X2 ⊕ X3 then the
conditions i), i i) and i i i) are satisfied. In addition, an Einstein G2 manifold with τ0 =
τ1 = 0 has non-positive Einstein constant by (6). If such constant is zero then the G2-
structure is parallel. So, inwhat followswe suppose that the Einstein constant is negative,
which after scaling we consider to be −6, and so by Table 3 the possible functions are
f (t) = cosh t , et , or sinh t . Next we will prove that there is no solution in any of these
cases.

From α2(t) + β2(t) = 1 we can write α(t) = cos θ(t) and β(t) = sin θ(t), for some
real-valued function θ(t). Thus, α(t)β ′(t)− β(t)α′(t) = θ ′(t), and equations i) and i i)
in Corollary 3.5 become:

i) 3π0 α(t) − 3 σ0 β(t) + θ ′(t) f (t) = 0,
i i) σ0 α(t) + π0 β(t) + 2 f ′(t) = 0.

Multiplying i) by α(t), i i) by 3β(t), and summing the resulting equations, we get

3π0 = 3π0(α
2(t) + β2(t)) = −θ ′(t)α(t) f (t) − 6β(t) f ′(t).

Since π0 is a function on the fiber manifold L and the right hand side of the equation
only depends on t , necessarily there exists a constant C1 such that

θ ′(t)α(t) f (t) + 6β(t) f ′(t) = C1. (11)

Now, multiplying i) by −β(t), i i) by 3α(t), and summing the resulting equations,
we get

3 σ0 = 3 σ0(α
2(t) + β2(t)) = θ ′(t)β(t) f (t) − 6α(t) f ′(t).

Hence, there exists a constant C2 such that

θ ′(t)β(t) f (t) − 6α(t) f ′(t) = C2. (12)

Taking the product of (12) by α(t), the product of (11) by β(t), and subtracting the
equations, we get 6 f ′(t) = C1 β(t) − C2 α(t). In a similar way, taking the product of
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(12) byβ(t), the product of (11) byα(t), and summing the equations, we get θ ′(t) f (t) =
C1 α(t) + C2 β(t). That is, we arrive at the following system:

6 f ′(t) = C1 β(t) − C2 α(t), (13)
θ ′(t) f (t) = C1 α(t) + C2 β(t). (14)

Taking the derivative of (14) and using (13) we get θ ′′(t) f (t) + θ ′(t) f ′(t) =
C1 α′(t) + C2 β ′(t) = −θ ′(t)(C1 β(t) − C2 α(t)) = −6 θ ′(t) f ′(t), that is

θ ′′(t) f (t) + 7 θ ′(t) f ′(t) = 0.

Notice that θ ′(t) = 0 implies that the functions α(t) and β(t) are constant, and then
equation i i) cannot be solved for f (t) = cosh t, et , or sinh t . Therefore, θ ′(t) ̸= 0 and
we can write the previous equation as

(
ln θ ′(t) + 7 ln f (t)

)′ = 0.

Hence, there exists a positive constant C0 such that

θ ′(t) = C0 f (t)−7. (15)

On the other hand, taking the derivative of (13) and using (14) we get 6 f ′′(t) =
C1 β ′(t) − C2 α′(t) = θ ′(t)(C1 α(t) + C2 β(t)) = (θ ′(t))2 f (t), that is

6 f ′′(t) = (θ ′(t))2 f (t).

Now, using (15), we have 6 f ′′(t) = C2
0 f (t)−13, i.e.

f (t)13 f ′′(t) = C2
0/6,

which never holds for the functions f (t) = cosh t, et , or sinh t . In conclusion, the system
i)−i i i) is never satisfied. ⊓,

Since the classX2 ⊕X3 contains the class of closed and the class of coclosed of pure
type G2 manifolds, from Proposition 4.6 we get

Corollary 4.7. There does not exist any SU(3) manifold (L ,ω,ψ+,ψ−) for which the
warped G2 manifold M = I f × L is Einstein closed or coclosed of pure type, unless it
is parallel.

Remark 4.8. As we recall in the introduction, it is an open question if an Einstein closed
G2 manifold must be parallel. Several authors have proved that this question has an
affirmative answer in different particular situations: for compact (and more generally,
for ∗-Einstein) manifolds in [13,15], for non-negative scalar curvature in [9], and for
solvmanifolds with left invariant G2-structure in [19]. The corollary above shows that
the answer is also affirmative in the class of warped G2 manifolds.

Now, we turn our attention to Einstein locally conformal parallel G2 manifolds, i.e.
Einstein manifolds in the class X4.

Proposition 4.9. There exists anEinstein locally conformal parallelwarpedG2-structure
on M = I f × L with Scal(gϕ) = −42 if and only the fiber (L ,ω,ψ+,ψ−) is one of the
following:
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• L is Calabi-Yau, and then M = R × L is the exponential-cone with G2-structure
ϕ = e2tω ∧ dt + e3tψ+; thus, the unique non-vanishing torsion form is τ1 = dt.

• L belongs toW+
1 ⊕W−

1 with Scal(gω,ψ+) = 30, and then M = (0,∞)× L is the hy-
perbolic sine-cone withG2-structure ϕ = sinh2 t ω∧dt +sinh3 t

(
ε σ0

2 ψ+ − ε π0
2 ψ−

)
,

where ε = ±1 and σ0,π0 are the (constant) torsion functions of the SU(3)-structure,
which satisfy π2

0 + σ 2
0 = 4. Thus, the non-vanishing torsion form of the warped G2-

structure is exactly τ1 = ε+cosh t
sinh t dt .

Proof. Suppose there is such a warped product. Using that τ0 = τ2 = τ3 = 0 and
Corollary 3.5, similarly to the proof of Proposition 4.2 we arrive at the fact that L
belongs toW+

1 ⊕W−
1 , so the torsion reduces to σ0,π0. On the other hand, by Theorem

3.4 the unique non-vanishing torsion form of the warped G2-structure is

τ1 =
1
2 f

(π0β + σ0α + 2 f ′)dt. (16)

If σ0,π0 vanish then L is Calabi-Yau and the warped product is the exponential-cone. If
the torsion of L is non-zero then the scalar curvature of L is equal to 30 and f (t) = sinh t .
The equations i) and vi) in Corollary 3.5 give the solutions (α,β) = (ε σ0

2 , ε
π0
2 ), where

ε = ±1. Finally, the values of τ1 for both cases are obtained as a direct consequence of
(16). ⊓,

Similarly to the previous proposition we have:

Proposition 4.10. Let (L ,ω,ψ+,ψ−) be an SU(3) manifold. Then:

(i) There exists a Ricci flat locally conformal parallel warped G2-structure on M =
I f ×L if and only if the fiber L belongs toW+

1 ⊕W−
1 , and then M = (0,∞)×L is

the cone withG2-structure ϕ = t2 ω ∧ dt + t3
(
ε σ0

2 ψ+ − ε π0
2 ψ−

)
, where ε = ±1

and τ1 = ε+1
t dt . In addition, M is parallel if and only if ε = −1.

(ii) There exists an Einstein locally conformal parallel warped G2-structure on M =
I f × L with Scal(gϕ) = 42 if and only if the fiber L belongs toW+

1 ⊕ W−
1 , and

then M = (0,π) × L is the sin t-cone with G2-structure ϕ = sin2 t ω ∧ dt +
sin3 t

(
ε σ0

2 ψ+ − ε π0
2 ψ−

)
, where ε = ±1 and τ1 = ε+cos t

sin t dt .

4.2. Einstein coclosedG2 manifolds. In this section we construct Einstein coclosed G2-
structures (i.e. of type X1 ⊕ X3) on warped products of SU(3) manifolds in the class
W+

1 ⊕W−
1 ⊕W3. We apply the construction to the manifold S3 × S3 endowed with one

of the SU(3)-structures described in [41].

Theorem 4.11. Let (L ,ω,ψ+,ψ−) be an Einstein SU(3)-structure of typeW+
1 ⊕W−

1 ⊕
W3 with Scal(gω,ψ+) = 30. Then, the torsion functions π0, σ0 are constant, and C =√

π2
0 + σ 2

0 satisfies C ≥ 2.
Moreover, let a = arccos(σ0/C) and consider θ(t) as follows:

(i) if θ(t) is the constant function θ = a − arccos(−2/C), then the G2-structure

ϕ = t2 ω ∧ dt + t3
(
cos θ ψ+ − sin θ ψ−

)

on the manifold M = (0,∞)× L is coclosed and its induced metric is Ricci flat;
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(ii) if θ(t) = a − arccos(−2 cos t/C), then the G2-structure

ϕ = sin2 t ω ∧ dt + sin3 t
(
cos θ(t)ψ+ − sin θ(t)ψ−

)

on the manifold M = (0,π) × L is coclosed and its induced metric is Einstein
with Scal(gϕ) = 42;

(iii) if C > 2 and θ(t) = a − arccos(−2 cosh t/C), then the G2-structure

ϕ = sinh2 t ω ∧ dt + sinh3 t
(
cos θ(t)ψ+ − sin θ(t)ψ−

)

on the manifold M =
(
0, ln C+

√
C2−4
2

)
× L is coclosed, and its induced metric is

Einstein with Scal(gϕ) = −42.

Proof. Since the SU(3)-structure is of typeW+
1 ⊕W−

1 ⊕W3, we have that the possibly
non-zero torsion reduces to π0, σ0 and ν3, that is, the Eq. (1) reduce to

dω = −3
2
σ0 ψ+ +

3
2
π0 ψ− + ν3, dψ+ = π0 ω2, dψ− = σ0 ω2.

These equations imply dπ0 ∧ω2 = 0 and dσ0 ∧ω2 = 0, therefore the torsion functions
π0, σ0 are constant.

On the other hand, from the expression (2) for the scalar curvature we get

30 = Scal(gω,ψ+) =
15
2
(π2

0 + σ 2
0 ) − 1

2
|ν3|2 ≤ 15

2
(π2

0 + σ 2
0 ),

which implies C2 = π2
0 + σ 2

0 ≥ 4.
Moreover, from Corollary 3.5 the G2-structure given by (7) has torsion form τ2 = 0.

Thus, it is coclosed if and only if τ1 = 0 or, equivalently by Corollary 3.5, if and only
if the equation

σ0 α(t) + π0 β(t) = −2 f ′(t)

is satisfied. The scalar curvature of gω,ψ+ is positive, so f (t) must be t , sin t or sinh t .
Let a = arccos(σ0/C), i.e. σ0 = C cos a and π0 = C sin a. Writing α(t) = cos θ(t)

and β(t) = sin θ(t), the equation above becomes σ0 α(t)+π0 β(t) = C cos(a−θ(t)) =
−2 f ′(t), that is,

θ(t) = a − arccos(−2 f ′(t)/C).

For f (t) = t or sin t , we have that | − 2 f ′(t)/C | ≤ 1 for any t , because C ≥ 2.
However, for f (t) = sinh t , since cosh t ≥ 1 we need to impose that C > 2 in order to
get an open interval of values of t satisfying | − 2 cosh t/C | < 1. Indeed, such interval
is (ln C−

√
C2−4
2 , ln C+

√
C2−4
2 ) when C > 2. From this discussion, the cases (i), (ii) and

(iii) follow directly. ⊓,
Example 4.12. We will apply Theorem 4.11 to an Einstein SU(3)-structure on S3 × S3

in the class W−
1 ⊕ W3 found in [41]. Here we will follow the description given in [37,

Section 3.4].
Let us consider the sphere S3, viewed as the Lie group SU(2), with the basis of left

invariant 1-forms {e1, e2, e3} satisfying
de1 = e23, de2 = −e13, and de3 = e12.
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Hence, the Lie algebra of S3 × S3 is g = su(2) ⊕ su(2), and its structure equations are

g = (e23,−e13, e12, f 23,− f 13, f 12),

where { f i } denotes the basis of 1-forms on the second sphere. Now, we consider the
basis {h1, . . . , h6} of the dual space g∗ of g given by

h1 =
√
5

10
(e1 + f 1), h2 =

√
5

10
(−e1 + f 1), h3 =

√
10
10

e2,

h4 =
√
10
10

f 2, h5 =
√
10
10

e3, h6 =
√
10
10

f 3.

With respect to this basis, the structure equations of the Lie algebra g of S3 × S3 turn
into

g =
(√

5(h35 + h46),
√
5(−h35 + h46),

√
5(−h15 + h25),

√
5(−h16 − h26),

√
5(h13 − h23),

√
5(h14 + h24)

)
.

We define the SU(3)-structure (ω,ψ+,ψ−) on S3 × S3 by

ω = h12 + h34 + h56, ψ+ = h135 − h146 − h236 − h245,

ψ− = h136 + h145 + h235 − h246.

Then, an easy calculation shows that the Eq. (1) are

dω = − 3
2σ0 ψ+ + ν3,

dψ+ = 0,

dψ− = σ0 ω ∧ ω,

where σ0 = −
√
5 and the torsion form ν3 is given by

ν3 = −
√
5
2

h135 +

√
5
2

h146 −
√
5
2

h236 −
√
5
2

h245 +
√
5 h235 +

√
5 h246.

Therefore, the SU(3)-structure (ω,ψ+,ψ−) on S3 × S3 belongs to the classW−
1 ⊕W3.

Moreover, the induced metric gω,ψ+ on S3 × S3 is given by gω,ψ+ = ∑6
i=1 h

i ⊗ hi , and
its Ricci curvature tensor satisfies

Ric(gω,ψ+) = 5 gω,ψ+ .

Thus, gω,ψ+ is an Einstein metric on S3 × S3 with Scal(gω,ψ+) = 30.
We can apply Theorem 4.11 to get Einstein coclosed G2 manifolds with different

scalar curvatures. Notice that C =
√
5 and a = π . Thus, in case (i) we get α = 2

√
5

5

and β = −
√
5
5 , that is, the manifold M = (0,∞) × S3 × S3 with the G2-structure

ϕ = t2ω ∧ dt +

√
5
5

t3
(
2ψ+ − ψ−

)

is a Ricci flat coclosed G2 manifold.
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In case (ii), we have that a slight modification of the sine-cone provides an Einstein
coclosed G2 manifold. More concretely, the G2-structure

ϕ = sin2 t ω ∧ dt +

√
5
5

sin3 t
(
2 cos t ψ+ −

√
5 − 4 cos2 t ψ−

)

on the manifold M = (0,π) × S3 × S3 is coclosed and its induced metric is Einstein
with positive scalar curvature.

Finally, sinceC =
√
5 > 2we can apply (iii) with θ(t) = π−arccos(−2 cosh t/

√
5),

to get that the G2-structure

ϕ = sinh2 t ω ∧ dt +

√
5
5

sinh3 t
(
2 cosh t ψ+ −

√
5 − 4 cosh2 t ψ−

)

on the manifold M =
(
0, ln 1+

√
5

2

)
× S3 × S3 is coclosed and its induced metric is

Einstein with negative scalar curvature.

4.3. Warped products of Einstein coupled manifolds. In this section we consider warped
products of 6-manifolds endowed with a coupled SU(3)-structure. Coupled SU(3)-
structures were first introduced in [40] (see also [22] for their role in physics), and
they are characterized by the condition

dω = cψ+, (17)

where c ∈ R − {0} is a nonzero constant. Equivalently, coupled SU(3)-structures have
torsion class W−

1 ⊕ W−
2 , i.e. they are SU(3)-structures for which all the torsion forms

different from σ0 and σ2 vanish. Notice that the torsion function σ0 is a constant such
that σ0 = − 2 c

3 . Coupled SU(3)-structures are half-flat and they generalize the nearly
Kähler structures (σ2 = 0). The next result follows from Theorem 3.4.

Proposition 4.13. Let (M = I f × L ,ϕ) be a warped G2 manifold of a coupled SU(3)
manifold (L ,ω,ψ+,ψ−). The torsion forms are

τ0 = − 4
7 f

(
3β σ0 − f αβ ′ + fβα′),

τ1 =
1
2 f

(α σ0 + 2 f ′)dt,

τ2 = − f α σ2,

τ3 =
3
14

f 2
(
αβ σ0 + 2 fβ ′) ψ+ − 3

14
f 2

(
β2σ0 − 2 f α′

)
ψ−

− 2
7
f
(
β σ0 + 2 f αβ ′ − 2 fβα′) ω ∧ dt − fβ σ2 ∧ dt,

where σ0 = − 2
3 c.

Next we will consider coupled SU(3)-structures with σ2 ̸= 0 (i.e. which are not
nearly-Kähler, since the latter case has been studied in Sect. 4.1) which are Einstein
with positive scalar curvature. In the following result we restrict our attention to those
warped G2-structures for which α and β are constant.
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Theorem 4.14. Let (L ,ω,ψ+,ψ−) be a (non nearly-Kähler) Einstein coupled SU(3)
manifold with Scal(gω,ψ+) = 30. Then, the coupled constant c satisfies |c| > 3, and we
have:

(i) If (α,β) = (1, 0), then the G2-structure

ϕ = f 2ω ∧ dt + f 3ψ+

on the manifold M = I f × L is locally conformal closed (i.e. of type X2 ⊕ X4)
and its induced metric is Ricci flat for f (t) = t , Einstein with Scal(gϕ) = 42 for
f (t) = sin t , and Einstein with Scal(gϕ) = −42 for f (t) = sinh t .

(ii) If (α,β) = (0, 1), then the G2-structure

ϕ = f 2ω ∧ dt − f 3ψ−

on the manifold M = I f × L is integrable (i.e. of type X1 ⊕ X3 ⊕ X4) and
its induced metric is Ricci flat for f (t) = t , Einstein with Scal(gϕ) = 42 for
f (t) = sin t , and Einstein with Scal(gϕ) = −42 for f (t) = sinh t .

(iii) If (α,β) = ( 3c ,
√
c2−9
c ), then the G2-structure

ϕ = t2ω ∧ dt +
t3

c

(
3ψ+ −

√
c2 − 9ψ−

)

on the manifold M = (0,∞)× L is of type X1 ⊕X2 ⊕X3 with Ricci flat induced
metric.

Proof. Since σ0, σ2 do not vanish, from the expression (2) for the scalar curvature we
get

30 = Scal(gω,ψ+) =
15
2

σ 2
0 − 1

2
|σ2|2 =

15
2

(
−2
3
c
)2

− 1
2
|σ2|2 <

10
3

c2.

Therefore, the coupled constant c in (17) satisfies c2 > 9.
Let α and β be constant functions satisfying α2 + β2 = 1. Then, by Proposition 4.13

the torsion forms of the warped G2-structure reduce to

τ0 =
8
7 f

β c, τ1 =
1
3 f

(3 f ′ − α c)dt, τ2 = − f α σ2,

τ3 = −1
7
f 2αβ cψ+ +

1
7
f 2β2cψ− +

4
21

fβ cω ∧ dt − fβ σ2 ∧ dt,

where β = ±
√
1 − α2 and 0 ≤ |α| ≤ 1.

In the case (i), since α = 1 and β = 0 we get

τ0 = 0, τ1 =
1
3 f

(3 f ′ − c)dt, τ2 = − f σ2, τ3 = 0.

Hence the torsion forms τ0 and τ3 vanish, i.e. the G2 manifold is locally conformal
closed. Applying Table 3 to the function f (t) = t we have that the induced metric is
Ricci flat, and for the function f (t) = sin t (resp. f (t) = sinh t) the metric induced by
the G2-structure is Einstein with Scal(gϕ) = 42 (resp. Scal(gϕ) = −42).
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In the case (ii), since α = 0 and β = 1 we have

τ0 =
8
7 f

c, τ1 =
f ′

f
dt, τ2 = 0, τ3 =

1
7
f 2cψ− +

4
21

f cω ∧ dt − f σ2 ∧ dt.

Since τ2 = 0, the G2 manifold is of type X1 ⊕X3 ⊕X4. From Table 3, for the function
f (t) = sin t , resp. f (t) = sinh t , the metric induced by the G2-structure is Einstein
with Scal(gϕ) = 42, resp. Scal(gϕ) = −42. For f (t) = t the resulting metric is Ricci
flat.

In the case (iii), we take α = 3/c. Since |c| > 3 one has that |α| < 1 and we can
take β such that β2 = 1 − α2 = c2−9

c2 . The torsion forms are

τ0 =
8
7 f

√
c2 − 9, τ1 =

1
f
( f ′ − 1)dt, τ2 = −3

c
f σ2,

τ3 = −3
√
c2 − 9
7c

f 2 ψ+ +
c2 − 9
7c

f 2 ψ− +
4
21

√
c2 − 9 f ω ∧ dt −

√
c2 − 9
c

f σ2 ∧ dt.

The only possibility for a torsion form to be zero is to consider the function f (t) = t
to get τ1 = 0 (the other torsion forms are clearly non-zero). Therefore, we obtain a G2
manifold of type X1 ⊕ X2 ⊕ X3 with Ricci flat induced metric. ⊓,

In order to exemplify this construction we describe first an example of Einstein
coupled SU(3)-structure arising from a twistor space.

Example 4.15. It is well-known that the set of positive, orthogonal almost complex struc-
tures on a four-dimensional oriented Riemannian manifold forms a smooth manifoldZ .
The 6-dimensional manifold Z , which is known as the twistor space, admits a (non-
integrable) almost complex structure J [17]. If in addition the four-manifold is self-dual
Einstein with a suitable positive value of the scalar curvature, then (Z, J ) admits an
Einstein coupled SU(3)-structure [43]. Recall that in such case the four-manifold is
isometric to the sphere or CP2 with their canonical metrics (see [5]).

We follow the lines of [22] for the description of this coupled structure. There is a
local frame {e1, . . . , e6} for the 1-forms on Z such that the coupled SU(3)-structure
(ω,ψ+,ψ−) expresses locally as

ω = 8
5
(e12 + e34 + e56), ψ+ = Re', ψ− = Im',

where

' = (8/5)
3
2 i (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6).

The differential of the forms ω and ψ− are given by

dω = −3
2
σ0 ψ+, dψ− = σ0 ω2 − σ2 ∧ ω,

with

σ0 =
√
10
6

(σ + 2), σ2 = −8
√
10

15
(σ − 1) (e12 + e34 − 2e56),

where 24 σ is equal to the scalar curvature of the given four-manifold. Themetric induced
by the SU(3)-structure is Einstein precisely for the values σ = 1 (in this case the torsion
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form σ2 vanishes and the structure is nearly-Kähler) and σ = 2. For the latter coupled
SU(3)-structure the constant c in (17) is c = −

√
10, and

Ric(gω,ψ+) = 5 gω,ψ+ ,

so that we can apply Theorem 4.14.
In the cases (i) and (ii) we get G2-structures which are locally conformal closed or

integrable (i.e. of types X2 ⊕ X4 or X1 ⊕ X3 ⊕ X4) whose induced metrics are Ricci
flat for f (t) = t , Einstein with Scal(gϕ) = 42 for f (t) = sin t , and Einstein with
Scal(gϕ) = −42 for f (t) = sinh t .

In the case (iii) of Theorem 4.14, since |c| =
√
10 > 3, we get that the G2-structure

ϕ = t2ω ∧ dt − t3√
10

(3ψ+ − ψ−),

is of type X1 ⊕ X2 ⊕ X3 with Ricci flat induced metric.

Remark 4.16. Bryant proved in [9] that there are no closed G2-structures ϕ with
Scal(gϕ) ≥ 0 unless they are parallel. Indeed, by (6) any such structure satisfies
Scal(gϕ) = − 1

2 |τ2|2. From Example 4.15 it follows that such a result cannot be ex-
tended to the locally conformal closed class, since there are (non parallel) Einstein
examples with positive scalar curvature, as well as Ricci flat examples. Notice that the
latter case is considered by Fino and Raffero in [22].

In the following result we extend the case (iii) in Theorem 4.14 to more general G2-
structures for which the functions α and β are not constant. This produces new Einstein
examples with positive, as well as negative, scalar curvature when we apply the result
to a twistor space over a self dual Einstein 4-manifold.

Theorem 4.17. Let (L ,ω,ψ+,ψ−) be a (non nearly-Kähler) Einstein coupled SU(3)
manifold with Scal(gω,ψ+) = 30. Then,

(i) the G2-structure ϕ on the manifold M = (0,π) × L given by

ϕ = sin2 t ω ∧ dt +
sin3 t
c

(
3 cos t ψ+ −

√
c2 − 9 cos2 t ψ−

)

is of type X1 ⊕ X2 ⊕ X3 and its induced metric is Einstein with Scal(gϕ) = 42;

(ii) the G2-structure ϕ on the manifold M =
(
0, ln |c|+

√
c2−9
3

)
× L given by

ϕ = sinh2 t ω ∧ dt +
sinh3 t

c

(
3 cosh t ψ+ −

√
c2 − 9 cosh2 t ψ−

)

is of type X1 ⊕X2 ⊕X3 and its induced metric is Einstein with Scal(gϕ) = −42.

Proof. By Proposition 4.13 we get that τ1 = 0 if and only if α(t) = 3
c f

′(t).
First we consider f (t) = sin t . Since |c| > 3 by Theorem 4.14, the function α(t) =

3
c cos t satisfies |α(t)| < 1 for any t ∈ R.

Let us consider now f (t) = sinh t . Since |c| > 3, the function α(t) = 3
c cosh t

satisfies |α(t)| ≤ 1 only for the values of t ∈
[
− ln |c|+

√
c2−9
3 , ln |c|+

√
c2−9
3

]
.

Hence, in both cases, the result follows by taking β(t) such that β2(t) = 1
− α2(t). ⊓,
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Let us consider the twistor space Z over a self-dual Einstein 4-manifold with the
Einstein coupled SU(3)-structure given in Example 4.15.Hence, fromTheorem4.14 (iii)
and Theorem 4.17, we obtain G2 manifolds in the class X1 ⊕ X2 ⊕ X3 which are Ricci
flat, or Einstein with Scal(gϕ) = ±42.

Einstein G2 manifolds in the class X2 ⊕ X3 ⊕ X4 are given in the following

Theorem 4.18. Let (L ,ω,ψ+,ψ−) be a (non nearly-Kähler) Einstein coupled SU(3)
manifold with Scal(gω,ψ+) = 30. Let c denote the coupled constant, and consider θ(t)
as follows:

(i) if θ(t) = arcsin
(

2t−2c

1+t−4c

)
, then theG2-structureϕ on themanifold M = (0,∞)×L

given by

ϕ = t2ω ∧ dt + t3(cos θ(t)ψ+ − sin θ(t)ψ−)

belongs to the class X2 ⊕ X3 ⊕ X4 and its induced metric is Ricci flat;

(ii) if θ(t) = arcsin
(

2(tan t
2 )

−2c

1+(tan t
2 )

−4c

)
, then the G2-structure ϕ on the manifold M =

(0,π) × L given by

ϕ = sin2 tω ∧ dt + sin3 t (cos θ(t)ψ+ − sin θ(t)ψ−)

belongs to the class X2 ⊕ X3 ⊕ X4 and its induced metric is Einstein with
Scal(gϕ) = 42;

(iii) if θ(t) = arcsin
(

2(tanh t
2 )

−2c

1+(tanh t
2 )

−4c

)
, then the G2-structure ϕ on the manifold M =

(0,∞) × L given by

ϕ = sinh2 tω ∧ dt + sinh3 t (cos θ(t)ψ+ − sin θ(t)ψ−)

belongs to the class X2 ⊕ X3 ⊕ X4 and its induced metric is Einstein with
Scal(gϕ) = −42.

Proof. Taking α(t) = cos θ(t) and β(t) = sin θ(t) in Proposition 4.13 we get that
τ0 = 4

7 f (2c sin θ + f θ ′). A direct calculation shows that for (i), (ii) and (iii) with
f (t) = t , sin t and sinh t , respectively, the torsion form τ0 vanishes, so the G2-structure
belongs to the class X2 ⊕ X3 ⊕ X4 and the induced metric is Einstein. Note that τ1, τ2
and τ3 never vanish. ⊓,

4.4. Warped products of Einstein solvmanifolds. Up to now, we have constructed Ein-
steinwarpedG2 manifolds bymeans of thewarping functions f (t) = et , sinh t , t or sin t .
In view of Table 3, it remains to obtain examples with warping function f (t) = cosh t .
Note that in order to obtain such examples, the fiber manifold is required to be Ein-
stein with negative scalar curvature. For this reason, and since Einstein solvmanifolds
have negative scalar curvature, in this section we consider the warped products of 6-
dimensional solvmanifolds.

An Einstein solvmanifold (S, g) can be described in terms of its Einstein metric
solvable Lie algebra, namely (s, ⟨·, ·⟩s), where s is the Lie algebra of the solvable Lie
group S, and ⟨·, ·⟩s is the scalar product on s. In [35] Lauret obtained a structure theorem
for Einstein metric solvable Lie algebras.
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Theorem 4.19 [35]. Any Einstein metric solvable Lie algebra (s, ⟨·, ·⟩s) has to be of
standard type.

Let (n, ⟨·, ·⟩) be a metric nilpotent Lie algebra. A metric solvable extension of
(n, ⟨·, ·⟩) is a metric solvable Lie algebra (s, ⟨·, ·⟩s) such that s has the orthogonal
decomposition s = n⊕ a with [s, s] = n, [a, a] ⊂ n and ⟨·, ·⟩s|n×n = ⟨·, ·⟩. The metric
solvable Lie algebra (s, ⟨·, ·⟩s) is said to be standard or to have standard type if a is an
Abelian subalgebra of s. In this case, dim a is called the rank.

Taking into account the structure theorem, in [37, Section 3.2] a classification of
Einstein metric 6-dimensional solvable Lie algebras is obtained. There, metric nilpotent
Lie algebras up to dimension five are considered, and their corresponding Einsteinmetric
solvable extensions are described.

By considering these 6-dimensional Einstein metric solvable Lie algebras, in the
following example we give an Einstein G2 manifold obtained as a warped product with
warping function f (t) = cosh t .

Example 4.20. Let (S, g) be the solvmanifold corresponding to the metric solvable Lie
algebra (s, ⟨·, ·⟩) with s defined by the structure equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 =
√
10
4 e16,

de2 =
√
10
4 e26,

de3 =
√
10
4 e36,

de4 =
√
10
4 e46,

de5 =
√
10
2 e12 +

√
10
2 e34 +

√
10
2 e56,

de6 = 0,

and ⟨ei , e j ⟩ = δi j . Consider the SU(3)-structure (ω,ψ+,ψ−) on S given by

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246.

It is clear that the induced metric is precisely the given g, i.e. g = gω,ψ+ , and it can be
checked that

Ric(gω,ψ+) = −5 gω,ψ+ .

A direct calculation shows that

dω = 0, dψ+ = π1 ∧ ψ+, dψ− = π1 ∧ ψ−,

where π1 = −
√
10 e6 is the unique non-zero torsion of the SU(3)-structure.

Thus, the SU(3) manifold (S,ω,ψ+,ψ−) is of type W5 and its induced metric is
Einstein with Scal(gω,ψ+) = −30. We conclude that the G2 manifold (R × S,ϕ) with

ϕ = cosh2 t ω ∧ dt + cosh3 t ψ+,

is of typeX2⊕X3⊕X4 and its inducedmetric is Einstein with Scal(gϕ) = −42. Indeed,
by Corollary 3.5 we have τ0 = 0, and τ1, τ2, τ3 ̸= 0, because π1 ̸= 0 = ν1.
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5. Classification of Einstein G2-Structures

In this sectionwe apply the results and constructions of EinsteinG2-structures onwarped
productmanifolds given in the previous sections.Motivated by the classification problem
studied by Cabrera et al. [12], we realize most of the G2-classes in the Einstein setting
with scalar curvature of different signs. Moreover, at the end of the section we produce
several explicit families of Einstein G2-structures with identical Riemannian metric but
having different G2 type (see [1,9,28,34,36] for related results).

In Table 5 we show concrete Einstein examples, when they exist, in the different
Fernández-Gray classes of G2 manifolds. Since the examples are warped products, in
the first columnwe indicate the fibre. ByNK and CY wemean a nearly Kähler manifold
and aCalabi Yaumanifold, respectively. The fiber S3×S3 is the Einstein SU(3)manifold
described in Example 4.12. By Z we mean the twistor space over a self-dual Einstein
4-manifold with the Einstein coupled SU(3)-structure given in Example 4.15. Finally,
S is the Einstein solvmanifold given in Example 4.20.

The second, third, and fourth columns give information about the class of the SU(3)-
structure on the fiber, the Einstein constantµ of its induced metric, and the torsion forms
which are nonzero, respectively.

In Table 5 we also indicate the functions f (t) that give rise to the Einstein G2
manifolds. The functions α(t) = cos θ(t) and β(t) = sin θ(t) defining the appropriate
warped G2-structure in each case are carefully chosen so that the resulting structure
provides a strict example in the G2-class. Here we use the term “strict” to indicate that
the G2-structure does not belong to any subclass of the given one. Next we give details
for each G2-class:

• The class P . Examples are given by the t-cone of a nearly Kähler manifold (see
Proposition 4.2 and Corollary 4.5).

• Strict examples in X1. Strict examples are given in Proposition 4.3 (see also
Corollaries 4.4 and 4.5) as the sine-cone of a nearly Kähler manifold.

• The classesX2 andX3. From Proposition 4.6 (see also Corollary 4.7) one has that
via the warped construction it is not possible to obtain strict Einstein examples in
these classes.

• Strict examples inX4. Examples are given in Propositions 4.9 and 4.10 as warped
products of Calabi-Yau manifolds or, more generally, of Einstein SU(3)manifolds
in the classW+

1 ⊕W−
1 . For instance, for a nearly Kähler manifold, taking α(t) = 1

and β(t) = 0 we get Einstein examples in X4\P with constant λ = −6 for
f (t) = sinh t , and constant λ = 6 for f (t) = sin t . Also Ricci flat examples in
X4\P can be obtained with the construction described in Proposition 4.10 (i).

• The classX1⊕X2. On a connected manifold, one has thatX1∪X2 = X1⊕X2 (see
[12, Theorem 2.1]), so there do not exist strict G2-structures in this class. From
Proposition 4.6 we conclude that there do not exist Einstein warped G2 manifolds
in the classX2. Thus, the unique Einstein warpedG2 manifolds in the classX1⊕X2
are those in X1.

• Strict examples in X1 ⊕ X3. The G2-structures given in Example 4.12 starting
from S3 × S3 provide Einstein coclosed examples. Moreover, using Corollary 3.5
one can see that the torsion forms τ0, τ3 ̸= 0, so they are strict.

• Strict examples in X1 ⊕X4. A G2-structure belongs to X1 ⊕X4\(X1 ∪X4) if and
only if the torsion forms satisfy τ2 = τ3 = 0 and τ0, τ1 ̸= 0. In order to construct
strict examples in the classX1⊕X4, we consider a nearly-Kähler manifold L , with
torsion σ0 = −2 and Einstein constant µ = 5. Let us take α(t) = cos θ(t) and
β(t) = sin θ(t), with function θ(t) chosen as follows:
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(i) if θ(t) = 2 arctan(eC t), with C a constant, and f (t) = t , then the corresponding
warped G2-structure on the manifold (0,∞)× L belongs to X1 ⊕X4\(X1 ∪X4)
and its induced metric is Ricci flat;

(ii) if θ(t) = 2 arctan(eC tanh t
2 ), with C a constant, and f (t) = sinh t , then we get a

warped G2-structure on (0,∞)× L sitting in X1 ⊕X4\(X1 ∪X4) whose induced
metric is Einstein with λ = −6;

(iii) if θ(t) = 2 arctan(eC tan t
2 ), withC ̸= 0 a constant, and f (t) = sin t , thenweget a

warpedG2-structure on themanifold (0,π)×L that belongs toX1⊕X4\(X1∪X4)
and whose induced metric is Einstein with λ = 6.
Notice that if in the case (iii) one considers C = 0, then one recovers the sine-
cone over a nearly-Kähler manifold, and so the G2-structure belongs to X1\P .
For characterization results of manifolds in the strict class X1 ⊕ X4, see [14].

• The class X2 ⊕ X3. By Proposition 4.6 we have that via the warped product
construction it is not possible to obtain strict Einstein examples in the classX2⊕X3.

• Strict examples in X2 ⊕ X4. We consider the warped G2-structures in the class
X2 ⊕ X4 given in Example 4.15 starting from the twistor space Z over a self-
dual Einstein 4-manifold. Using Corollary 3.5 one can see that the torsion forms
τ1, τ2 ̸= 0, so they belong to X2 ⊕ X4\(X2 ∪ X4).

• Strict examples in X3 ⊕ X4. For strict examples in X3 ⊕ X4, we consider the
productmanifold S3×S3 endowedwith the SU(3)-structure given inExample 4.12.
Recall that the torsion reduces to σ0 = −

√
5 and ν3 ̸= 0. A G2-structure belongs

to X3 ⊕ X4\(X3 ∪ X4) if and only if τ0 = τ2 = 0 and τ1, τ3 ̸= 0.
Taking (α,β) = (1, 0), we get that the warped G2-structure ϕ = f 2ω∧dt + f 3ψ+
on the manifold M = I f × S3 × S3 satisfies τ0 = τ2 = 0 and its induced metric
is Ricci flat for f (t) = t , Einstein with positive scalar curvature for f (t) = sin t ,
and Einstein with negative scalar curvature for f (t) = sinh t .
Clearly, ν3 ̸= 0 implies τ3 ̸= 0 by Corollary 3.5. Moreover, τ1 = 0 if and only
if σ0 α + 2 f ′(t) = −

√
5 + 2 f ′(t) = 0. Hence, it is clear that τ1 ̸= 0 for the

functions f (t) = sinh t , t or sin t . In conclusion, one has Einstein examples in
X3 ⊕ X4\(X3 ∪ X4) with Einstein constant λ = −6, 0 or 6.

• Strict examples in the classes X1 ⊕ X2 ⊕ X3 and X1 ⊕ X3 ⊕ X4. Several strict
examples in these classes are constructed in Sect. 4.3 on warped products of Ein-
stein coupled SU(3) manifolds (see Theorems 4.14 (ii)–(iii) and 4.17, and also
Example 5.7 below).

• The class X1 ⊕X2 ⊕X4. This class is the only one where the existence of a strict
Einstein warped G2 manifold remains open. An example could be obtained as
follows. Let L be an Einstein SU(3)-structure in the classW−

1 ⊕ W4 ⊕ W5, with
Einstein constant µ = 5, and such that the nonzero torsion forms satisfy σ0 = −2
and ν1 = π1 ̸= 0. The sine-cone of L , i.e. α(t) = cos t and β(t) = f (t) = sin t ,
would satisfy that τ3 = 0 and τ0, τ1, τ2 ̸= 0. However, we do not know of any
such L:

Question 5.1. Are there Einstein SU(3)-structures of positive scalar curvature whose
nonzero torsion is given by σ0 = −2 and ν1 = π1 ̸= 0?

• Strict examples in X2 ⊕ X3 ⊕ X4. Einstein examples in this class are given in
Theorem 4.18 as a warped product of the twistor space Z , and in Example 4.20 as
a warped product of the Einstein solvmanifold S. Since their torsion satisfies that
τ0 = 0 and τ1, τ2, τ3 ̸= 0, such examples are strict, i.e. they belong to X2 ⊕X3 ⊕
X4\((X2 ⊕ X3) ∪ (X2 ⊕ X4) ∪ (X3 ⊕ X4)).
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• Strict examples in the general class X1 ⊕ X2 ⊕ X3 ⊕ X4. Examples on warped
products of the twistor space Z are given in Example 5.7 below.

We summarize the previous results in the following theorem. By “admissible” we
mean that formula (6) does not give an obstruction to the existence of an Einstein G2-
structure with the desired scalar curvature in the given G2-class.

Theorem 5.2. For Einstein warped G2-structures, we have:

(i) There are Ricci flat warped G2-structures of every admissible strict type, except
possibly for X1 ⊕ X2 ⊕ X4.

(ii) There are Einstein warped G2-structures with positive scalar curvature of every
admissible strict type, except possibly for X1 ⊕ X2 ⊕ X4.

(iii) There are Einstein warped G2-structures with negative scalar curvature of every
admissible strict type, except forX2,X3,X2⊕X3, and possibly forX1⊕X2⊕X4.

Motivated by these results, we ask the following general questions:

Question 5.3. Are there Einstein G2 manifolds in the strict class X1 ⊕ X2 ⊕ X4 with
Einstein constant < 0, = 0, or > 0?

Question 5.4. Are there Einstein G2 manifolds with negative scalar curvature in the
strict classes X2, X3 or X2 ⊕ X3?

Remark 5.5. In [15, Section 8.4], cohomogeneity-one metrics are used to construct
(Ricci-flat) metrics with holonomy in G2 and in different admissible G2-classes. Con-
cerning the class X1 ⊕ X2 ⊕ X4, one can see that the vanishing of the torsion form τ3
implies that the functions defining the metric must be equal, which leads to τ2 = 0 and
so the G2-structure lies in X1 ⊕ X4.

The results in Sects. 4.2 and 4.3 allow to construct explicit families of G2-structures
in different classes but with the same underlying Einstein metric.

For a fixed Riemannian metric generated by some G2-structure, it is natural to ask
what are the different G2-structures that induce the same metric. Bryant gave in [9] an
answer to this general question, and recently Lin has investigated in [36] the space of
parallel G2-structures inducing the same Riemannian metric on a compact 7-manifold.
In the following examples we provide some families of G2-structures in distinct classes
but with identical Einstein metric. We will consider deformations of the form

ϕ̃ = ϕ + χ , where χ = f 3(t)
(
A α(t)ψ+ − B β(t)ψ−

)

for certain constants A, B. General results on deformations of the form ϕ̃ = ϕ + χ ,
where χ is a 3-form, are obtained in [28] (see also [34]).

Example 5.6. G2-structureswith identical Einsteinmetric onwarped products of a nearly
Kählermanifold. Let us consider L a nearlyKählermanifold and let f (t) = sin t . Follow-
ing the case (iii) aboveof strict examples inX1⊕X4, consider θC (t) = 2 arctan(eC tan t

2 ),
where C ∈ R is a constant. The G2-structures ϕC on M = (0,π) × L given by

ϕC = sin2 t ω ∧ dt + sin3 t
(
cos θC (t)ψ+ − sin θC (t)ψ−

)

satisfy that gϕC = dt2 + sin2 t gL , i.e. the induced Einstein metric is identical for all the
G2-structures in the family. The G2-type of ϕC varies as follows:

• X1, if and only if C = 0;
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• X1 ⊕ X4, if and only if C ̸= 0.

Therefore, we can deform the structure in X1 to one in the class X1 ⊕ X4.

Example 5.7. G2-structures with identical Einstein metric on warped products of the
twistor space Z . We define an explicit family of G2-structures in different classes but
with the same inducedRicci flatmetric starting from L in the conditions of Theorem 4.14
(iii), in particular for L = Z . Let us denote α0 = 3

c and β0 =
√
c2−9
c , and consider

(a, b) ∈ R2 the points in the ellipse of equation α2
0 a

2 +β2
0 b

2 = 1. On M = (0,∞)× L
we take the family of G2-structures

ϕa,b = t2ω ∧ dt + t3 (a α0 ψ+ − b β0 ψ−) .

The induced Ricci flat metric is gϕa,b = dt2 + t2gL , but the G2-structure belongs to the
strict class

• X1 ⊕ X2 ⊕ X3, if and only if (a, b) = (1, 1);
• X2 ⊕ X4, if and only if (a, b) = (α−1

0 , 0);
• X1 ⊕ X3 ⊕ X4, if and only if (a, b) = (0,β−1

0 );
• X1 ⊕ X2 ⊕ X3 ⊕ X4 for any other values of (a, b).

Similar families can be constructed for the other Einstein metrics based on f (t) =
sin t and f (t) = sinh t . Take (a, b) ∈ R2 satisfying a2 + b2 = 1. On M = (0,∞) × L ,
we consider the family of G2-structures

ϕa,b = f 2ω ∧ dt + f 3 (a ψ+ − bψ−) .

The induced Einstein metric is gϕa,b = dt2 + f 2gL , and by Theorem 4.14 (i) (ii), the
G2-structure belongs to the strict class

• X2 ⊕ X4, if and only if (a, b) = (1, 0);
• X1 ⊕ X3 ⊕ X4, if and only if (a, b) = (0, 1);
• X1 ⊕ X2 ⊕ X3 ⊕ X4 for any other values of (a, b).

The Einstein constant is positive, resp. negative, for f (t) = sin t , resp. f (t) = sinh t .

6. Spin(7)-Structures

In this sectionwe consider Spin(7)manifolds given as awarpedproduct of aG2 manifold,
andwe obtain an explicit description of the torsion forms of thewarped Spin(7)-structure
in terms of the torsion forms of the G2-structure.

A Spin(7)-structure on an 8-dimensional manifold N consists of a reduction of the
structure group of its frame bundle to the Lie group Spin(7). Equivalently, such structure
can be characterized by the existence of a global non-degenerate 4-form φ on N which
can be locally written as

φ = e1278 + e3478 + e5678 + e1358 − e1468 − e2368 − e2458

+ e1234 + e1256 + e3456 + e1367 + e1457 + e2357 − e2467,
(18)

where {e1, . . . , e8} is a local basis of 1-forms on N . The presence of a Spin(7)-structure
φ on a manifold defines a volume form vol8 and a Riemannian metric gφ which satisfy

(
gφ(X, X)gφ(Y, Y ) − gφ(X, Y )2

)
vol8 =

1
6
ιX ιYφ ∧ ιX ιYφ ∧ φ,
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where gφ(U,U ) is given explicitly in [34, Corollary 4.3.2].
Given a Spin(7)manifold (N ,φ), the group Spin(7) acts on the space of differential

p-forms(p(N ) on N . This action is irreducible on(1(N ) and(7(N ), but it is reducible
for (p(N ) with 2 ≤ p ≤ 6. Since the Hodge star operator ∗8 induces an isomorphism
∗8 (p(N ) ∼= (8−p(N ), it suffices to describe the decompositions for p = 2, 3 and 4.
In [8] it is shown that the Spin(7) irreducible decompositions for 2 ≤ p ≤ 4 are

(2(N ) = (2
7(N ) ⊕ (2

21(N ),

(3(N ) = (3
8(N ) ⊕ (3

48(N ),

(4(N ) = (4
1(N ) ⊕ (4

7(N ) ⊕ (4
27(N ) ⊕ (4

35(N ),

where (
p
k (N ) denotes the Spin(7) irreducible space of p-forms of dimension k at every

point. The description on the other degrees is obtained via the isomorphism ∗8 (
p
k (N ) ∼=

(
8−p
k (N ) given by the Hodge star operator, and in this section we are only interested in

the Spin(7)-type decomposition of 5-forms. This space decomposes as

(5(N ) = (5
8(N ) ⊕ (5

48(N ),

where
(5

8(N ) = {α ∧ φ | α ∈ (1(N )},
(5

48(N ) = {γ ∈ (5(N ) | φ ∧ ∗8γ = 0}.
The isomorphisms between Spin(7) irreducible spaces introduce a scaling factor on

1-forms κ ∈ (1(N ) as follows:

∗8 (∗8(κ ∧ φ) ∧ φ) = −7κ. (19)

The above decomposition of 5-forms on N allows to express the exterior derivative
of φ as

dφ = λ1 ∧ φ + λ5, (20)

where λ1 ∈ (1(N ) and λ5 ∈ (5
48(N ) are called the torsion forms of the Spin(7)-

structure.
According to [18] the covariant derivative of φ can be decomposed into two com-

ponents, namely Y1 and Y2. Thus, a Spin(7)-structure is said of type P,Y1,Y2 or
Y = Y1 ⊕ Y2 if the covariant derivative ∇gφφ lies in {0}, Y1,Y2 or Y = Y1 ⊕ Y2,
respectively. In terms of the torsion forms, these classes are characterized in Table 4. In
the parallel case, the holonomy reduces to Spin(7) and the metric is Ricci-flat. Examples
of manifolds with Spin(7) holonomy are constructed in [9,10,33].

Table 4. Classes of Spin(7)-structures

Class Torsion forms Structure
P λ1 = λ5 = 0 Parallel
Y1 λ5 = 0 Locally conformal parallel
Y2 λ1 = 0 Balanced
Y = Y1 ⊕ Y2 No condition General Spin(7)
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As it happened for SU(3) andG2 manifolds, the scalar curvature of a Spin(7)manifold
can be described in terms of the torsion forms. The expression can be achieved from the
formulas described in [31,39] and is given as follows:

Scal(gφ) =
21
8
|λ1|2 − 1

2
|λ5|2 +

7
2
d∗8λ1, (21)

where d∗8 denotes the codifferential, i.e. the adjoint operator of the exterior derivative
with respect to the metric.

Consider a 7-dimensional manifold M endowed with a G2-structure ϕ. Let N be the
Riemannian product N = R × M , and denote by p : N −→ R and q : N −→ M the
projections. Then, the 4-form

φ = q∗(ϕ) ∧ p∗(dt) + q∗(∗7ϕ),

with t the coordinate on R, defines a Spin(7)-structure on N . In the following, ϕ and
∗7ϕ will be identified with their pullbacks onto N . More generally, we have

Proposition 6.1. Let (M,ϕ) be a G2 manifold and consider a function f : I f −→ R.
Then, the 4-form on N = I f × M given by

φ = f 3(t)ϕ ∧ dt + f 4(t) ∗7ϕ (22)

defines a Spin(7)-structure with induced metric

gφ = f 2(t) gϕ + dt2,

and volume form vol8 = f 7(t)vol7 ∧ dt.

Proof. Let {e1, . . . , e7} be a local orthonormal basis of 1-forms such that the 3-form
ϕ writes as in (3). Now, with respect to the local basis on N given by {h1, . . . , h8} =
{ f (t)e1, . . . , f (t)e7, dt}, the 4-form φ can be written as in (18). Therefore, {h1, . . . , h8}
is orthonormal for the metric gφ , and

gφ =
8∑

i=1

hi ⊗ hi = f 2(t)
7∑

i=1

ei ⊗ ei + dt ⊗ dt = f 2(t) gϕ + dt2.

⊓,
By the preceding proposition, the Spin(7) manifold N = I f × M with φ described

in (22) corresponds, as a Riemannian manifold, to the warped product N = I f × f M .
Wewill refer to such a Spin(7)-structure as awarpedSpin(7)-structure, and themanifold
(N = I f × M,φ) will be called warped Spin(7) manifold.

Lemma 6.2. Let β ∈ (q(M) be a differential q-form on M, and let ∗7 and ∗8 be the
Hodge star operators induced by the structures ϕ and φ, respectively. Then,

∗8β = f 7−2q ∗7β ∧ dt, ∗8(β ∧ dt) = (−1)q+1 f 7−2q ∗7β.

Proof. It is a consequence of the fact that the Hodge star operator ∗8 is determined by
(gφ, vol8), where vol8 = f 7vol7 ∧ dt and vol7 = 1

7ϕ ∧ ∗7ϕ. ⊓,
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Theorem 6.3. Let (M,ϕ) be a G2 manifold with torsion forms τ0, τ1, τ2, τ3. Then, the
torsion forms λ1, λ5 of a warped Spin(7) manifold (N = I f × M,φ) are given by

λ1 =
1
f
(τ0 + 4 f ′) dt +

24
7

τ1,

λ5 = −3
7
f 3 τ1 ∧ ϕ ∧ dt +

4
7
f 4 τ1 ∧ ∗7ϕ + f 4 τ2 ∧ ϕ + f 3 ∗7τ3 ∧ dt.

Proof. From (19) and (20), and since λ5 ∈ (5
48(N ), it follows that the torsion form λ1

is given by

λ1 = −1
7

∗8
(
(∗8d φ) ∧ φ

)
.

In order to compute ∗8dφ, we first take into account (5) and (22) to get

dφ = f 3(τ0 + 4 f ′) ∗7ϕ ∧ dt + 3 f 3 τ1 ∧ ϕ ∧ dt + f 3 ∗7τ3 ∧ dt
+4 f 4 τ1 ∧ ∗7ϕ + f 4 τ2 ∧ ϕ.

A direct calculation using Lemma 6.2 shows that

∗8dφ = − f 2(τ0 + 4 f ′)ϕ − 3 f 2 ∗7(τ1 ∧ ϕ) − f 2τ3 + 4 f ∗7(τ1 ∧ ∗7ϕ) ∧ dt
+ f ∗7(τ2 ∧ ϕ) ∧ dt.

Now, by (4) we arrive at

(∗8dφ) ∧ φ = − f 6(τ0 + 4 f ′)ϕ ∧ ∗7ϕ
− 3 f 5 ∗7(τ1 ∧ ϕ) ∧ ϕ ∧ dt − 3 f 6 ∗7(τ1 ∧ ϕ) ∧ ∗7ϕ
+ 4 f 5 ∗7(τ1 ∧ ∗7ϕ) ∧ ∗7ϕ ∧ dt

= − f 6(τ0 + 4 f ′)ϕ ∧ ∗7ϕ + 24 f 5 ∗7τ1 ∧ dt.

Then, using again Lemma 6.2, we get

∗8
(
(∗8dφ) ∧ φ

)
= − 7

f
(τ0 + 4 f ′) dt − 24 τ1,

concluding that

λ1 =
1
f
(τ0 + 4 f ′) dt +

24
7

τ1.

Finally, for the torsion form λ5 we use that λ5 = dφ − λ1 ∧ φ, together with the
expressions of dφ and λ1 given above. ⊓,

A direct consequence of the previous theorem is the following

Corollary 6.4. The torsion forms of a warped Spin(7)-structure satisfy:

λ1 = 0 ⇐⇒
{
i) τ0 + 4 f ′ = 0,
i i) τ1 = 0.

λ5 = 0 ⇐⇒

⎧
⎨

⎩

i i i) τ1 = 0,
iv) τ2 = 0,
v) τ3 = 0.



Einstein Warped G2 and Spin(7) Manifolds 669

7. Einstein Warped Spin(7) Manifolds

Our aim in this section is to construct Einstein 8-manifolds in the different Spin(7)-
classes by means of warped products of certain Einstein G2 manifolds, i.e. by means of
warped Spin(7)-structures. As in Sect. 4, in order to use directly Table 3, in this section
we will also consider the Einstein metrics to be “normalized”.

We begin with a characterization of the warped Spin(7) manifolds that are parallel,
which is related to a well known result in [3].

Proposition 7.1. There exists a parallel warped Spin(7)-structure on N = I f × M if
and only if the fiber (M,ϕ) belongs to X1, i.e. it is a nearly parallel G2 manifold, with
torsion τ0 = −4.

Furthermore, in that case N = (0,∞) × M is the cone with Spin(7)-structure

φ = t3 ϕ ∧ dt + t4 ∗7 ϕ.

Proof. The parallel condition on the Spin(7)-structure is equivalent to λ1 = λ5 = 0.
From Corollary 6.4, and taking into account the possible functions in Table 3, these
equations are equivalent to

τ1 = τ2 = τ3 = 0, τ0 = −4 and f (t) = t,

and the result follows. ⊓,
The following three propositions give characterizations of the warped Spin(7)mani-

folds that are Einstein and locally conformal parallel, depending on the sign of its scalar
curvature.

Proposition 7.2. There exists an Einstein locally conformal parallel warped Spin(7)-
structure φ on N = I f × M with Scal(gφ) = 56 if and only if the fiber (M,ϕ) belongs
to X1 with torsion τ0 = ±4.

Furthermore, in that case N = (0,π) × M is the sine-cone with Spin(7)-structure

φ = sin3 t ϕ ∧ dt + sin4 t ∗7 ϕ.

Proof. Suppose there exists such a warped product (N = I f × M,φ). Since λ5 = 0,
Corollary 6.4 forces the G2-structure ϕ to be in the class X1. Since Scal(gφ) = 56,
by Table 3 we get that the warping function is necessarily given by f (t) = sin t and
Scal(gϕ) = 42. Now, by (6), the torsion of the G2-structure is τ0 = ±4.

Conversely, if we consider a nearly parallel G2 manifold with torsion τ0 = ±4, then
the warped Spin(7)-structure with f (t) = sin t is Einstein (with constant 7) and locally
conformal parallel by Corollary 6.4. ⊓,
Proposition 7.3. There exists a Ricci flat (strict) locally conformal parallel warped
Spin(7)-structure φ on N = I f × M if and only if the fiber (M,ϕ) belongs to X1 with
torsion τ0 = 4.

Furthermore, in that case N = (0,∞) × M is the cone with Spin(7)-structure

φ = t3 ϕ ∧ dt + t4 ∗7 ϕ.

Proof. The proof is similar to that of Proposition 7.2, but taking into account that the
Ricci flatness forces the warping function to be f (t) = t . Hence, the locally conformal
parallel Spin(7)-structure is strict only when τ0 = 4. ⊓,
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Proposition 7.4. There exists an Einstein locally conformal parallel warped Spin(7)-
structure φ on N = I f × M with Scal(gφ) = −56 if and only if the G2-structure ϕ on
the fiber M is one of the following:

• Parallel, and then N = R × M is the exponential-cone with the Spin(7)-structure

φ = e3t ϕ ∧ dt + e4t ∗7ϕ;
• Nearly parallel with torsion τ0 = ±4, and then N = (0,∞)× M is the hyperbolic
sine-cone with the Spin(7)-structure

φ = sinh3 t ϕ ∧ dt + sinh4 t ∗7ϕ.
Proof. The proof is similar to the preceding propositions, but since Scal(gφ) = −56, by
Table 3 we have that either τ0 = 0 and f (t) = et , or Scal(gϕ) = 42 and f (t) = sinh t .
In the first case the fiber is parallel, and in the second case it is a nearly parallel G2
manifold with torsion τ0 = ±4. ⊓,

As a consequence one gets Einstein locally conformal parallel Spin(7) manifolds
with negative, zero or positive constant (see Corollary 4.4 for G2 manifolds satisfying
the hypothesis of the following corollary) (Table5).

Corollary 7.5. Let (M,ϕ) be a nearly parallel G2 manifold with torsion τ0 = 4. Then,
there are warped Spin(7)-structures with fiber (M,ϕ) which are (strict) locally confor-
mal parallel and Einstein with constant −7, 0 or 7, by taking the function f (t) = sinh t ,
t or sin t , respectively.

In the following result we note that there are no Einstein (strict) balanced warped
Spin(7) manifolds.

Proposition 7.6. A warped Spin(7) manifold is balanced and Einstein if and only if it
is a parallel Spin(7) manifold.

Proof. Given an Einstein balanced warped Spin(7)manifold, since λ1 = 0, from Corol-
lary 6.4 we get that the torsion forms of the G2-structure on the fiber satisfy

τ1 = 0, τ0 = −4

and thewarping function inTable 3 is f (t) = t . Thus, the Spin(7)-structure is necessarily
Ricci flat and by (21) we get λ5 = 0. In conclusion, the warped Spin(7)-structure is
parallel. ⊓,

As in Sect. 5, we summarize in Table 6 the results obtained above for Einstein warped
Spin(7) manifold in the different strict classes:

• The class P . Examples are given by the t-cone of a nearly parallel G2 manifold
(see Proposition 7.1).

• The class Y1. Strict examples with Einstein constant −7, 0 or 7 are given in
Corollary 7.5 as the hyperbolic sine-cone, cone or sine-cone, respectively, of a
nearly parallel G2 manifold with torsion τ0 = 4.

• The classY2. By Proposition 7.6 it is not possible to obtain strict Einstein examples
via the warped construction.

• The general class Y1 ⊕Y2. Strict examples with positive, null and negative scalar
curvature can be achieved as the different cones of Einstein locally conformal
parallel G2 manifolds (see Sect. 5 for examples of such G2 manifolds).
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Table 6. Einstein warped Spin(7)-structures

Fiber G2-class µ G2 non-
vanishing
torsion
forms

f (t)-cone metric Strict
Spin(7)-
class

Einstein
constant
λ

Spin(7)
non-
vanishing
torsion
forms

NP X1 6 τ0 = −4 t P 0 –
NP X1 6 τ0 sinh t, t, sin t Y1 −7, 0, 7 λ1
P {0} 0 – et Y1 −7 λ1
! Y2
LCP X4 6 τ1 sinh t, t, sin t Y1 ⊕ Y2 −7, 0, 7 λ1, λ5
LCP X4 0 τ1 et Y1 ⊕ Y2 −7 λ1, λ5
LCP X4 −6 τ1 cosh t Y1 ⊕ Y2 −7 λ1, λ5

We summarize the previous results in the following

Theorem 7.7. For Einstein warped Spin(7)-structures, we have:

(i) There are Ricci flat warped Spin(7)-structures of every admissible strict type.
(ii) There are Einstein warped Spin(7)-structures with positive scalar curvature of

every admissible strict type.
(iii) There are Einstein warped Spin(7)-structures with negative scalar curvature of

every admissible strict type, except for Y2.

Motivated by this result, we ask the following question:

Question 7.8. Are there Einstein (non parallel) balanced Spin(7) manifolds?
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